Skip to main content

Advertisement

Log in

Revisiting the Effects of Different Dietary Sources of Selenium on the Health and Performance of Dairy Animals: a Review

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is one of the most important essential trace elements in livestock production. It is a structural component in at least 25 selenoproteins such as the iodothyronine deiodinases and thioredoxin reductases as selenocysteine at critical positions in the active sites of these enzymes. It is also involved in the synthesis of the thyroid hormone and influences overall body metabolism. Selenium being a component of the glutathione peroxidase enzyme also plays a key role in the antioxidant defense system of animals. Dietary requirements of Se in dairy animals depend on physiological status, endogenous Se content, Se source, and route of administration. Most of the dietary Se is absorbed through the duodenum in ruminants and also some portion through the rumen wall. Inorganic Se salts such as Na-selenate and Na-selenite have shown lower bioavailability than organic and nano-Se. Selenium deficiency has been associated with reproductive disorders such as retained placenta, abortion, early embryonic death, and infertility, together with muscular diseases (like white muscle disease and skeletal and cardiac muscle necrosis). The deficiency of Se can also affect the udder health particularly favoring clinical and subclinical mastitis, along with an increase of milk somatic cell counts in dairy animals. However, excessive Se supplementation (5 to 8 mg/kg DM) can lead to acute toxicity including chronic and acute selenosis. Se is the most vital trace element for the optimum performance of dairy animals. This review focuses to provide insights into the comparative efficacy of different forms of dietary Se (inorganic, organic, and nano-Se) on the health and production of dairy animals and milk Se content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fisher GE (2008) Micronutrients and animal nutrition and the link between the application of micronutrients to crops and animal health. Turk J Agric For 32(3):221–233

    CAS  Google Scholar 

  2. NRC I (2001) Nutrient requirements of dairy cattle. National Research Council

  3. Zhou X, Qu X, Zhao S, Wang J, Li S, Zheng N (2017) Analysis of 22 elements in milk, feed, and water of dairy cow, goat, and buffalo from different regions of China. Biol Trace Elem Res 176(1):120–129

    CAS  PubMed  Google Scholar 

  4. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443

    CAS  PubMed  Google Scholar 

  5. Pappa EC, Pappas AC, Surai PF (2006) Selenium content in selected foods from the Greek market and estimation of the daily intake. Sci Total Environ 372(1):100–108

    CAS  PubMed  Google Scholar 

  6. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta (BBA) Gen Subj 1830(5):3289–3303

    Google Scholar 

  7. Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264(24):13963–13966

    CAS  PubMed  Google Scholar 

  8. Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    CAS  PubMed  Google Scholar 

  9. Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38(12):1543–1552

    CAS  PubMed  Google Scholar 

  10. Lundström J, Holmgren A (1990) Protein disulfide-isomerase is a substrate for thioredoxin reductase and has thioredoxin-like activity. J Biol Chem 265(16):9114–9120

    PubMed  Google Scholar 

  11. Tórtora-Pérez J (2010) The importance of selenium and the effects of its deficiency in animal health. Small Rumin Res 89(2-3):185–192

    Google Scholar 

  12. Rundlöf A-K, Arnér ES (2004) Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events. Antioxid Redox Signal 6(1):41–52

    PubMed  Google Scholar 

  13. Sarkar B, Bhattacharjee S, Daware A, Tribedi P, Krishnani K, Minhas P (2015) Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale Res Lett 10(1):371

    PubMed  PubMed Central  Google Scholar 

  14. Back TG (2013) Investigations of new types of glutathione peroxidase mimetics. In: Biochalcogen Chemistry: The Biological Chemistry of Sulfur, Selenium, and Tellurium. ACS Publications, pp 143-162

  15. Qazi IH, Angel C, Yang H, Zoidis E, Pan B, Wu Z, Ming Z, Zeng C-J, Meng Q, Han H (2019) Role of selenium and selenoproteins in male reproductive function: a review of past and present evidences. Antioxidants 8(8):268

    CAS  PubMed Central  Google Scholar 

  16. Weekley CM, Harris HH (2013) Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev 42(23):8870–8894

    CAS  PubMed  Google Scholar 

  17. Liu Y, Zhang Z, Dai S, Wang Y, Tian X, Zhao J, Wang C, Liu Q, Guo G, Huo W (2020) Effects of sodium selenite and coated sodium selenite addition on performance, ruminal fermentation, nutrient digestibility and hepatic gene expression related to lipid metabolism in dairy bulls. Livest Sci:104062

  18. Masukawa T (1987) Pharmacological and toxicological aspects of inorganic and organic selenium compounds. Org Selenium Tellurium Compd 2:377–392

    CAS  Google Scholar 

  19. Arthur JR, Beckett GJ (1999) Thyroid function. Br Med Bull 55(3):658–668

    CAS  PubMed  Google Scholar 

  20. Brown KM, Arthur J (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4(2b):593–599

    CAS  PubMed  Google Scholar 

  21. Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64(4):527–542

    CAS  PubMed  Google Scholar 

  22. Jensen C, Pallauf J (2008) Estimation of the selenium requirement of growing guinea pigs (Cavia porcellus). J Anim Physiol Anim Nutr 92(4):481–491

    CAS  Google Scholar 

  23. Marin-Guzman J, Mahan D, Pate J (2000) Effect of dietary selenium and vitamin E on spermatogenic development in boars. J Anim Sci 78(6):1537–1543

    CAS  PubMed  Google Scholar 

  24. Kendall N, McMullen S, Green A, Rodway R (2000) The effect of a zinc, cobalt and selenium soluble glass bolus on trace element status and semen quality of ram lambs. Anim Reprod Sci 62(4):277–283

    CAS  PubMed  Google Scholar 

  25. Juan Eulogio GL, Jorge Alberto SO, Vazquez Hugo C, Nunez Antonio C, Alejandro C-I, Quiroz Juan M (2012) Effects of the selenium and vitamin E in the production, physicochemical composition and somatic cell count in milk of Ayrshire cows. J Anim Vet Adv 11(5):119–123

    Google Scholar 

  26. Spears JW, Weiss WP (2008) Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet J 176(1):70–76

    CAS  PubMed  Google Scholar 

  27. Karkoodi K, Chamani M, Beheshti M, Mirghaffari SS, Azarfar A (2012) Effect of organic zinc, manganese, copper, and selenium chelates on colostrum production and reproductive and lameness indices in adequately supplemented Holstein cows. Biol Trace Elem Res 146(1):42–46

    CAS  PubMed  Google Scholar 

  28. Salman S, Dinse D, Khol-Parisini A, Schafft H, Lahrssen-Wiederholt M, Schreiner M, Scharek-Tedin L, Zentek J (2013) Colostrum and milk selenium, antioxidative capacity and immune status of dairy cows fed sodium selenite or selenium yeast. Arch Anim Nutr 67(1):48–61

    CAS  PubMed  Google Scholar 

  29. Briens M, Mercier Y, Rouffineau F, Mercerand F, Geraert P-A (2014) 2-Hydroxy-4-methylselenobutanoic acid induces additional tissue selenium enrichment in broiler chickens compared with other selenium sources. Poult Sci 93(1):85–93

    CAS  PubMed  Google Scholar 

  30. Givens DI, Allison R, Cottrill B, Blake JS (2004) Enhancing the selenium content of bovine milk through alteration of the form and concentration of selenium in the diet of the dairy cow. J Sci Food Agric 84(8):811–817

    CAS  Google Scholar 

  31. Walker G, Dunshea F, Heard J, Stockdale C, Doyle P (2010) Output of selenium in milk, urine, and feces is proportional to selenium intake in dairy cows fed a total mixed ration supplemented with selenium yeast. J Dairy Sci 93(10):4644–4650

    CAS  PubMed  Google Scholar 

  32. Gong J, Ni L, Wang D, Shi B, Yan S (2014) Effect of dietary organic selenium on milk selenium concentration and antioxidant and immune status in midlactation dairy cows. Livest Sci 170:84–90

    Google Scholar 

  33. Sun P, Wang J, Liu W, Bu D, Liu S, Zhang K (2017) Hydroxy-selenomethionine: a novel organic selenium source that improves antioxidant status and selenium concentrations in milk and plasma of mid-lactation dairy cows. J Dairy Sci 100(12):9602–9610

    CAS  PubMed  Google Scholar 

  34. Hassan S, Hassan F-u, Rehman MS-u (2020) Nano-particles of trace minerals in poultry nutrition: Potential applications and future prospects. Biol Trace Elem Res 195(2):591–612

    CAS  PubMed  Google Scholar 

  35. Berzelius JJ (1826) On selenium crystals and the preparation of selenium. Ann Phys 7:242–243

    Google Scholar 

  36. Muth O, Oldfield J, Remmert L, Schubert J (1958) Effects of selenium and vitamin E on white muscle disease. Science 128(3331):1090–1090

    CAS  PubMed  Google Scholar 

  37. Smith HA, Jones TC, Hunt RD (1972) Veterinary pathology-4

  38. Rotruck JT, Pope AL, Ganther HE, Swanson A, Hafeman DG, Hoekstra W (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073):588–590

    CAS  PubMed  Google Scholar 

  39. FDA F Drug Administration (1979) In: Conference on mycotoxins in animal feeds and grains related to animal health. Rockville

  40. FDA U (1987) General principles of validation, Rockville, MD. Center for Drug Evaluation and Research (CDER)

  41. Food U, Administration D (2009) Qualified health claim petition-selenium and a reduced risk of site-specific cancers (FDA-2008-Q-0323). Silver Spring: US Food and Drug Administration

  42. Authority EFS (2006) Opinion of the panel on additives and products or substances used in animal feed (FEEDAP) on the safety and efficacy of the product Sel-Plex 2000 as a feed additive according to Regulation (EC) No 1831/2003. EFSA J 4(5):348

    Google Scholar 

  43. Revilla-Vázquez A, Ramírez-Bribiesca E, López-Arellano R, Hernández-Calva LM, Tórtora-Pérez J, García-García E, Cruz Monterrosa RG (2008) Suplemento de selenio con bolos intrarruminales de selenito de sodio en ovinos. Agrociencia 42(6):629–635

    Google Scholar 

  44. Schrauzer GN (2003) The nutritional significance, metabolism and toxicology of selenomethionine. Adv Food Nutr Res 47:73–112

    CAS  PubMed  Google Scholar 

  45. Stewart W, Bobe G, Pirelli G, Mosher W, Hall J (2012) Organic and inorganic selenium: III. Ewe and progeny performance. J Anim Sci 90(12):4536–4543

    CAS  PubMed  Google Scholar 

  46. Mahmoud UT (2012) Silver nanoparticles in poultry production. J Adv Vet Res 2(4):303–306

    Google Scholar 

  47. Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42(10):1524–1533

    CAS  PubMed  Google Scholar 

  48. Zhang J, Wang X, Xu T (2008) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci 101(1):22–31

    CAS  PubMed  Google Scholar 

  49. Mehdi Y, Dufrasne I (2016) Selenium in cattle: a review. Molecules 21(4):545

    PubMed  PubMed Central  Google Scholar 

  50. Serra A, Nakamura K, Matsui T, Harumoto T, Fujihara T (1994) Inorganic selenium for sheep I. Selenium balance and selenium levels in the different ruminal fluid fractions. Asian Australas J Anim Sci 7(1):83–89

    CAS  Google Scholar 

  51. Koenig K, Rode L, Cohen R, Buckley W (1997) Effects of diet and chemical form of selenium on selenium metabolism in sheep. J Anim Sci 75(3):817–827

    CAS  PubMed  Google Scholar 

  52. Ivancic J Jr, Weiss W (2001) Effect of dietary sulfur and selenium concentrations on selenium balance of lactating Holstein cows. J Dairy Sci 84(1):225–232

    CAS  PubMed  Google Scholar 

  53. Weiss WP (2003) Selenium nutrition of dairy cows: comparing responses to organic and inorganic selenium forms. In: Nutritional Biotechnology in the Feed and Food Industries. Proceedings of Alltech’s 19th Annual Symposium. Nottingham University Press. Nottingham. pp 333-343

  54. Weiss WP, Hogan JS (2005) Effect of selenium source on selenium status, neutrophil function, and response to intramammary endotoxin challenge of dairy cows. J Dairy Sci 88(12):4366–4374

    CAS  PubMed  Google Scholar 

  55. Qin S, Gao J, Huang K (2007) Effects of different selenium sources on tissue selenium concentrations, blood GSH-Px activities and plasma interleukin levels in finishing lambs. Biol Trace Elem Res 116(1):91–102

    CAS  PubMed  Google Scholar 

  56. Kessler J (1993) Carence en sélénium chez les ruminants: Mesures prophylactiques. Rev Suisse Agric 25:21–26

    Google Scholar 

  57. Daniels LA (1996) Selenium metabolism and bioavailability. Biol Trace Elem Res 54(3):185–199

    CAS  PubMed  Google Scholar 

  58. Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130(7):1653–1656

    CAS  PubMed  Google Scholar 

  59. Foster L, Sumar S (1997) Selenium in health and disease: a review. Crit Rev Food Sci Nutr 37(3):211–228

    CAS  PubMed  Google Scholar 

  60. Burk RF (1991) Molecular biology of selenium with implications for its metabolism 1. FASEB J 5(9):2274–2279

    CAS  PubMed  Google Scholar 

  61. Janghorbani M, Rockway S, Mooers CS, Roberts EM, Ting BT, Sitrin MD (1990) Effect of chronic selenite supplementation on selenium excretion and organ accumulation in rats. J Nutr 120(3):274–279

    CAS  PubMed  Google Scholar 

  62. Sordillo L (2016) Nutritional strategies to optimize dairy cattle immunity. J Dairy Sci 99(6):4967–4982

    CAS  PubMed  Google Scholar 

  63. Leng L, Boldižárova K, Faix Š, Kováč G (2000) The urinary excretion of selenium in sheep treated with a vasopressin analogue. Vet Res 31(5):499–505

    CAS  PubMed  Google Scholar 

  64. Levander OA, DeLoach DP, Morris VC, Moser PB (1983) Platelet glutathione peroxidase activity as an index of selenium status in rats. J Nutr 113(1):55–63

    CAS  PubMed  Google Scholar 

  65. Dalto DB, Roy M, Audet I, Palin M-F, Guay F, Lapointe J, Matte JJ (2015) Interaction between vitamin B6 and source of selenium on the response of the selenium-dependent glutathione peroxidase system to oxidative stress induced by oestrus in pubertal pig. J Trace Elem Med Biol 32:21–29

    CAS  PubMed  Google Scholar 

  66. Shi L, Ren Y, Zhang C, Yue W, Lei F (2017) Effects of maternal dietary selenium (Se-enriched yeast) on growth performance, antioxidant status and haemato-biochemical parameters of their male kids in Taihang black goats. Anim Feed Sci Technol 231:67–75

    CAS  Google Scholar 

  67. Rutigliano HM (2006) Effects of source of supplemental Se and method of presynchronization on health, immune responses, reproductive efficiency, uterine health, lactation performance of high producing dairy cows. University of California, Davis

  68. Zhang L, Liu X, Liu J, An X, Zhou Z, Cao B, Song Y (2018) Supplemented organic and inorganic selenium affects milk performance and selenium concentration in milk and tissues in the Guanzhong dairy goat. Biol Trace Elem Res 183(2):254–260

    CAS  PubMed  Google Scholar 

  69. Lemly AD (2002) Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquat Toxicol 57(1-2):39–49

    CAS  PubMed  Google Scholar 

  70. Arthur JR, McKenzie RC, Beckett GJ (2003) Selenium in the immune system. J Nutr 133(5):1457S–1459S

    CAS  PubMed  Google Scholar 

  71. Lyons M, Papazyan T, Surai P (2007) Selenium in food chain and animal nutrition: lessons from nature-review. Asian Australas J Anim Sci 20(7):1135–1155

    CAS  Google Scholar 

  72. Zarczynska K, Sobiech P, Radwinska J, Rekawek W (2013) Effects of selenium on animal health. J Elem 18(2)

  73. Schöne F, Steinhöfel O, Weigel K, Bergmann H, Herzog E, Dunkel S, Kirmse R, Leiterer M (2013) Selenium in feedstuffs and rations for dairy cows including a view of the food chain up to the consumer. J Verbr Lebensm 8(4):271–280

    Google Scholar 

  74. Claude J (2002) Introduction à la nutrition des animaux domestiques. Tec & Doc/EM Inter: Paris

  75. Huo B, Wu T, Song C, Shen X (2020) Studies of selenium deficiency in the Wumeng semi-fine wool sheep. Biol Trace Elem Res 194(1):152–158

    CAS  PubMed  Google Scholar 

  76. Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Malevu TD, Sochor J, Baron M, Melcova M, Zidkova J (2017) A summary of new findings on the biological effects of selenium in selected animal species—a critical review. Int J Mol Sci 18(10):2209

    PubMed Central  Google Scholar 

  77. Khanal DR, Knight AP (2010) Selenium: its role in livestock health and productivity. J Agric Environ 11:101–106

    Google Scholar 

  78. Terry N, Zayed A, De Souza M, Tarun A (2000) Selenium in higher plants. Annu Rev Plant Biol 51(1):401–432

    CAS  Google Scholar 

  79. Hidiroglou M, Heaney DP, Jenkins K (1968) Metabolism of inorganic selenium in rumen bacteria. Can J Physiol Pharmacol 46(2):229–232

    CAS  PubMed  Google Scholar 

  80. Čobanová K, Faix Š, Plachá I, Mihaliková K, Váradyová Z, Kišidayová S, Grešáková Ľ (2017) Effects of different dietary selenium sources on antioxidant status and blood phagocytic activity in sheep. Biol Trace Elem Res 175(2):339–346

    PubMed  Google Scholar 

  81. McDonald P, Edwards R, Greenhalgh J, Morgan C, Sinclair L, Wilkinson R (2011) Animal Nutrition 7th edition England UK. Pearson Education Limited

  82. Fraser A, Ryan T, Sproule R, Clark R, Anderson D, Pederson E (1987) The effect of selenium supplementation on milk production in dairy cattle. In: Proc NZ Soc Anim Prod. pp 61-64

  83. Wales W, Kolver E, Thorne P, Egan A (2004) Diurnal variation in ruminal pH on the digestibility of highly digestible perennial ryegrass during continuous culture fermentation. J Dairy Sci 87(6):1864–1871

    CAS  PubMed  Google Scholar 

  84. Reynolds C, Kristensen NB (2008) Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis. J Anim Sci 86(suppl_14):E293–E305

    CAS  PubMed  Google Scholar 

  85. McKenzie RC, Arthur JR, Beckett GJ (2002) Selenium and the regulation of cell signaling, growth, and survival: molecular and mechanistic aspects. Antioxid Redox Signal 4(2):339–351

    CAS  PubMed  Google Scholar 

  86. Salman S, Khol-Parisini A, Schafft H, Lahrssen-Wiederholt M, Hulan H, Dinse D, Zentek J (2009) The role of dietary selenium in bovine mammary gland health and immune function. Anim Health Res Rev 10(1):21–34

    CAS  PubMed  Google Scholar 

  87. Seboussi R, Faye B, Alhadrami G, Askar M, Ibrahim W, Mahjoub B, Hassan K, Moustafa T, Elkhouly A (2010) Selenium distribution in camel blood and organs after different level of dietary selenium supplementation. Biol Trace Elem Res 133(1):34–50

    CAS  PubMed  Google Scholar 

  88. House WA, Bell AW (1994) Sulfur and selenium accretion in the gravid uterus during late gestation in Holstein cows. J Dairy Sci 77(7):1860–1869

    PubMed  Google Scholar 

  89. Rowntree J, Hill G, Hawkins D, Link J, Rincker M, Bednar G, Kreft R Jr (2004) Effect of Se on selenoprotein activity and thyroid hormone metabolism in beef and dairy cows and calves. J Anim Sci 82(10):2995–3005

    CAS  PubMed  Google Scholar 

  90. Enjalbert F, Lebreton P, Salat O, Schelcher F (1999) Effects of pre-or postpartum selenium supplementation on selenium status in beef cows and their calves. J Anim Sci 77(1):223–229

    CAS  PubMed  Google Scholar 

  91. Pehrson B, Ortman K, Madjid N, Trafikowska U (1999) The influence of dietary selenium as selenium yeast or sodium selenite on the concentration of selenium in the milk of suckler cows and on the selenium status of their calves. J Anim Sci 77(12):3371–3376

    CAS  PubMed  Google Scholar 

  92. Muñiz-Naveiro Ó, Domínguez-González R, Bermejo-Barrera A, Cocho de Juan JA, Fraga Bermúdez JM, Goris Pereiras A, López Santamariña A, Martínez Lede I, Valledor Puente J, Fernández-Couto Gómez L (2005) Selenium content and distribution in cow’s milk supplemented with two dietary selenium sources. J Agric Food Chem 53(25):9817–9822

    PubMed  Google Scholar 

  93. Żarczyńska K, Samardžija M, Sobiech P (2019) Influence of selenium administration to dry cows on selected biochemical and immune parameters of their offspring. Reprod Domest Anim 54(9):1284–1290

    PubMed  Google Scholar 

  94. Aliarabi H, Fadayifar A, Alimohamady R, Dezfoulian AH (2019) The effect of maternal supplementation of zinc, selenium, and cobalt as slow-release ruminal bolus in late pregnancy on some blood metabolites and performance of ewes and their lambs. Biol Trace Elem Res 187(2):403–410

    CAS  PubMed  Google Scholar 

  95. Zarbalizadeh-Saed A, Seifdavati J, Abdi-Benemar H, Salem AZ, Barbabosa-Pliego A, Camacho-Diaz LM, Fadayifar A, Seyed-Sharifi R (2019) Effect of slow-release pellets of selenium and iodine on performance and some blood metabolites of pregnant Moghani ewes and their lambs. Biol Trace Elem Res:1–11

  96. Salles MSV, Zanetti MA, Junior LCR, Salles FA, Azzolini AECS, Soares EM, Faccioli LH, Valim YML (2014) Performance and immune response of suckling calves fed organic selenium. Anim Feed Sci Technol 188:28–35

    CAS  Google Scholar 

  97. Hall JA, Bobe G, Vorachek WR, Gorman ME, Mosher WD, Pirelli GJ (2013) Effects of feeding selenium-enriched alfalfa hay on immunity and health of weaned beef calves. Biol Trace Elem Res 156(1-3):96–110

    CAS  PubMed  Google Scholar 

  98. Juniper DT, Rymer C, Briens M (2019) Bioefficacy of hydroxy-selenomethionine as a selenium supplement in pregnant dairy heifers and on the selenium status of their calves. J Dairy Sci 102(8):7000–7010

    CAS  PubMed  Google Scholar 

  99. Shi L, Song R, Yao X, Duan Y, Ren Y, Zhang C, Yue W, Lei F (2018) Effects of maternal dietary selenium (Se-enriched yeast) on testis development, testosterone level and testicular steroidogenesis-related gene expression of their male kids in Taihang Black Goats. Theriogenology 114:95–102

    CAS  PubMed  Google Scholar 

  100. Waegeneers N, Thiry C, De Temmerman L, Ruttens A (2013) Predicted dietary intake of selenium by the general adult population in Belgium. Food Addit Contam Part A 30(2):278–285

    CAS  Google Scholar 

  101. Wichtel JJ, Keefe GP, Van Leeuwen JA, Spangler E, McNiven MA, Ogilvie TH (2004) The selenium status of dairy herds in Prince Edward Island. Can Vet J 45(2):124

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Choi Y, Kim J, Lee H-S, Kim C-i, Hwang IK, Park HK, Oh C-H (2009) Selenium content in representative Korean foods. J Food Compos Anal 22(2):117–122

    CAS  Google Scholar 

  103. Zahrazadeh M, Riasi A, Farhangfar H, Mahyari SA (2018) Effects of close-up body condition score and selenium-vitamin E injection on lactation performance, blood metabolites, and oxidative status in high-producing dairy cows. J Dairy Sci 101(11):10495–10504

    CAS  PubMed  Google Scholar 

  104. Ibrahim E (2017) Effect of parenteral supplementation of vitamin E plus selenium on nutrient digestibility, productive performance and some serum biochemical indicators of lambs. Egypt J Sheep Goats Sci 12(1):1–12

    Google Scholar 

  105. Khalili M, Chamani M, Amanlou H, Nikkhah A, Sadeghi AA (2019) Effects of different sources of selenium supplementation on antioxidant indices, biochemical parameters, thyroid hormones and Se status in transition cows. Acta Sci Anim Sci 41:44392

    Google Scholar 

  106. Machado V, Bicalho M, Pereira R, Caixeta L, Knauer W, Oikonomou G, Gilbert R, Bicalho R (2013) Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on the health and production of lactating Holstein cows. Vet J 197(2):451–456

    CAS  PubMed  Google Scholar 

  107. Bagnicka E, Kościuczuk EM, Jarczak J, Jóźwik A, Strzałkowska N, Słoniewska D, Krzyżewski J (2017) The effect of inorganic and organic selenium added to diets on milk yield, milk chemical and mineral composition and the blood serum metabolic profile of dairy cows. Anim Sci Paper Rep 35(1):17–33

    CAS  Google Scholar 

  108. Vasil M, Zigo F, Elečko J, Zigová M, Farkašová Z (2017) Effect of peroral supplementation with selenium and vitamin E during late pregnancy on udder health and milk quality in dairy cows. Potravinárstvo Slovak J Food Sci 11(1):535–538

    Google Scholar 

  109. Moeini M, Karami H, Mikaeili E (2009) Effect of selenium and vitamin E supplementation during the late pregnancy on reproductive indices and milk production in heifers. Anim Reprod Sci 114(1-3):109–114

    CAS  PubMed  Google Scholar 

  110. Sun L, Gao S, Wang K, Xu J, Sanz-Fernandez M, Baumgard L, Bu D (2019) Effects of source on bioavailability of selenium, antioxidant status, and performance in lactating dairy cows during oxidative stress-inducing conditions. J Dairy Sci 102(1):311–319

    CAS  PubMed  Google Scholar 

  111. Pedernera M, Celi P, García SC, Salvin HE, Barchia I, Fulkerson WJ (2010) Effect of diet, energy balance and milk production on oxidative stress in early-lactating dairy cows grazing pasture. Vet J 186(3):352–357

    CAS  PubMed  Google Scholar 

  112. Miller R, Paape M, Fulton L, Schutz MM (1993) The relationship of milk somatic cell count to milk yields for Holstein heifers after first calving. J Dairy Sci 76(3):728–733

    Google Scholar 

  113. Oltramari CE, Pinheiro MG, de Miranda MS, Arcaro JR, Castelani L, Toledo LM, Ambrósio LA, Leme PR, Manella MQ, Júnior IA (2014) Selenium sources in the diet of dairy cows and their effects on milk production and quality, on udder health and on physiological indicators of heat stress. Ital J Anim Sci 13(1):2921

    Google Scholar 

  114. Juniper DT, Phipps RH, Jones AK, Bertin G (2006) Selenium supplementation of lactating dairy cows: effect on selenium concentration in blood, milk, urine, and feces. J Dairy Sci 89(9):3544–3551

    CAS  PubMed  Google Scholar 

  115. Ibeagha A, Ibeagha-Awemu E, Mehrzad J, Baurhoo B, Kgwatalala P, Zhao X (2009) The effect of selenium sources and supplementation on neutrophil functions in dairy cows. Animal 3(7):1037–1043

    CAS  PubMed  Google Scholar 

  116. Duncan S, Christen G, Penfield M (1991) Rancid flavor of milk: relationship of acid degree value, free fatty acids, and sensory perception. J Food Sci 56(2):394–397

    CAS  Google Scholar 

  117. Pehrson B (1993) Selenium in nutrition with special reference to the biopotency of organic and inorganic selenium compounds. In: Proceedings the 9th Alltech Symposium, Biotechnology in the Feed Industry (ed. PT Lyons). pp 71-89

  118. Wang C, Liu Q, Yang W, Dong Q, Yang X, He D, Zhang P, Dong K, Huang Y (2009) Effects of selenium yeast on rumen fermentation, lactation performance and feed digestibilities in lactating dairy cows. Livest Sci 126(1-3):239–244

    Google Scholar 

  119. Muniz-Naveiro O, Domínguez-González R, Bermejo-Barrera A, Cocho JA, Fraga JM, Bermejo-Barrera P (2005) Determination of total selenium and selenium distribution in the milk phases in commercial cow’s milk by HG-AAS. Anal Bioanal Chem 381(6):1145–1151

    CAS  PubMed  Google Scholar 

  120. Van Dael P, Vlaemynck G, Van Renterghem R, Deelstra H (1991) Selenium content of cow’s milk and its distribution in protein fractions. Z Lebensm Unters Forsch 192(5):422–426

    Google Scholar 

  121. Seboussi R, Faye B, Askar M, Hassan K, Alhadrami G (2009) Effect of selenium supplementation on blood status and milk, urine, and fecal excretion in pregnant and lactating camel. Biol Trace Elem Res 128(1):45–61

    CAS  PubMed  Google Scholar 

  122. Li Y, Liu J, Xiong J, Wang Y, Zhang W, Wang D (2019) Effect of hydroxyselenomethionine on lactation performance, blood profiles, and transfer efficiency in early-lactating dairy cows. J Dairy Sci 102(7):6167–6173

    CAS  PubMed  Google Scholar 

  123. Surai PF, Kochish II, Fisinin VI, Juniper DT (2019) Revisiting oxidative stress and the use of organic selenium in dairy cow nutrition. Animals 9(7):462

    PubMed Central  Google Scholar 

  124. Barbé F, Chevaux E, Castex M, Elcoso G, Bach A (2020) Comparison of selenium bioavailability in milk and serum in dairy cows fed different sources of organic selenium. Anim Prod Sci 60(2):269–276

    Google Scholar 

  125. Zhang Z, Wang C, Du H, Liu Q, Guo G, Huo W, Zhang J, Zhang Y, Pei C, Zhang S (2020) Effects of sodium selenite and coated sodium selenite on lactation performance, total tract nutrient digestion and rumen fermentation in Holstein dairy cows. Animal:1–9

  126. Ullah H, Khan RU, Mobashar M, Ahmad S, Sajid A, Khan NU, Usman T, Khattak I, Khan H (2019) Effect of yeast-based selenium on blood progesterone, metabolites and milk yield in Achai dairy cows. Ital J Anim Sci 18(1):1445–1450

    CAS  Google Scholar 

  127. Wei J, Wang J, Liu W, Zhang K, Sun P (2019) Effects of different selenium supplements on rumen fermentation and apparent nutrient and selenium digestibility of mid-lactation dairy cows. J Dairy Sci 102(4):3131–3135

    CAS  PubMed  Google Scholar 

  128. Du HS, Wang C, Wu ZZ, Zhang GW, Liu Q, Guo G, Huo WJ, Zhang YL, Pei CX, Zhang SL (2019) Effects of rumen-protected folic acid and rumen-protected sodium selenite supplementation on lactation performance, nutrient digestion, ruminal fermentation and blood metabolites in dairy cows. J Sci Food Agric 99(13):5826–5833

    CAS  PubMed  Google Scholar 

  129. Del Razo-Rodriguez O, Ramirez-Bribiesca J, Lopez-Arellano R, Revilla-Vazquez A, Gonzalez-Munoz S, Cobos-Peralta M, Hernandez-Calva L, McDowell L (2013) Effects of dietary level of selenium and grain on digestive metabolism in lambs. Czech J Anim Sci 58(6):253–261

    Google Scholar 

  130. Shi L, Xun W, Yue W, Zhang C, Ren Y, Shi L, Wang Q, Yang R, Lei F (2011) Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin Res 96(1):49–52

    Google Scholar 

  131. Mihaliková K, Boldižárová K, Faix Š, Kišidayová S (2005) The effects of organic selenium supplementation on the rumen ciliate population in sheep. Folia Microbiol 50(4):353–356

    Google Scholar 

  132. Zhang G, Wang C, Du H, Wu Z, Liu Q, Guo G, Huo W, Zhang J, Zhang Y, Pei C (2020) Effects of folic acid and sodium selenite on growth performance, nutrient digestion, ruminal fermentation and urinary excretion of purine derivatives in Holstein dairy calves. Livest Sci 231:103884

    Google Scholar 

  133. Ramadan S, Mahboub HDH, Helal MAY, Sallam MA (2018) Effect of vitamin E and selenium on performance and productivity of goats. Int J Chem Biomed Sci 4(2):16–22

    Google Scholar 

  134. Shahid AB, Malhi M, Soomro SA, Shah MG, Kalhoro NH, Kaka A, Mal R, Soomro MA, Samo SP, Sanjrani MN (2020) Influence of dietary selenium yeast supplementation on fermentation pattern, papillae morphology and antioxidant status in rumen of goat. Pakistan J Zool 52(2):565

    Google Scholar 

  135. Silva J, Rodriguez F, Trettel M, Abal R, Lima C, Yoshikawa C, Zanetti M (2020) Performance, carcass characteristics and meat quality of Nellore cattle supplemented with supranutritional doses of sodium selenite or selenium-enriched yeast. Animal 14(1):215–222

    CAS  PubMed  Google Scholar 

  136. Dhari EA, Kassim WY (2019) Effect of adding selenium with or without vitamin E and combination of them on some of productive and physiological characteristics of Awassi lambs. Basrah J Agric Sci 32(2):115–125

    Google Scholar 

  137. Ibrahim E, Mohamed M (2018) Effect of different dietary selenium sources supplementation on nutrient digestibility, productive performance and some serum biochemical indices in sheep. Egypt J Nutr Feeds 21(1):53–64

    Google Scholar 

  138. Wang Z, Tan Y, Cui X, Chang S, Xiao X, Yan T, Wang H, Hou F (2019) Effect of different levels of selenium yeast on the antioxidant status, nutrient digestibility, selenium balances and nitrogen metabolism of Tibetan sheep in the Qinghai-Tibetan Plateau. Small Rumin Res 180:63–69

    Google Scholar 

  139. Yaghmaie P, Ramin A, Asri-Rezaei S, Zamani A (2017) Evaluation of glutathion peroxidase activity, trace minerals and weight gain following administration of selenium compounds in lambs. In: Veterinary Research Forum. vol 2. Faculty of Veterinary Medicine, Urmia University, Urmia, p 133

  140. Kojouri G, Arbabi F, Mohebbi A (2019) The effects of selenium nanoparticles (SeNPs) on oxidant and antioxidant activities and neonatal lamb weight gain pattern. Comp Clin Pathol:1–6

  141. de Paiva Ferreira AV, Cominotte A, Ladeira MM, Casagrande DR, Teixeira PD, van Cleef E, Ezequiel J, Castagnino P, Neto ORM (2020) Feedlot diets with soybean oil, selenium and vitamin E alters rumen metabolism and fatty acids content in steers. Anim Feed Sci Technol 260:114362

    Google Scholar 

  142. Rashnoo M, Rahmati Z, Azarfar A, Fadayifar A (2020) The effects of maternal supplementation of selenium and iodine via slow-release blouses in late pregnancy on milk production of goats and performance of their kids. Ital J Anim Sci 19(1):502–513

    CAS  Google Scholar 

  143. Saba FE, Saleh A, Al Moafy A (2019) Effect of supplementation with different types of selenium on lactation performance and some blood parameters of Farafra and Saidi ewes and performance of their lambs. Egypt J Sheep Goats Sci 14(2):19–30

    Google Scholar 

  144. Faixová Z, Piešová E, Maková Z, Čobanová K, Faix Š (2016) Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on ruminal enzyme activities and blood chemistry in sheep. Acta Vet Brno 85(2):185–194

    Google Scholar 

  145. Bao K, Wang X, Wang K, Yang Y, Li G (2019) Effects of dietary supplementation with selenium and vitamin E on growth performance, nutrient apparent digestibility and blood parameters in female Sika deer (Cervus nippon). Biol Trace Elem Res:1–7

  146. Rossi CS, Compiani R, Baldi G, Muraro M, Marden J, Rossi R, Pastorelli G, Corino C, Dell’Orto V (2017) Organic selenium supplementation improves growth parameters, immune and antioxidant status of newly received beef cattle. J Anim Feed Sci 26(2):100–108

    Google Scholar 

  147. Grilli E, Gallo A, Fustini M, Fantinati P, Piva A (2013) Microencapsulated sodium selenite supplementation in dairy cows: effects on selenium status. Animal 7(12):1944–1949

    CAS  PubMed  Google Scholar 

  148. Longnecker MP, Stram DO, Taylor PR, Levander OA, Howe M, Veillon C, McAdam PA, Patterson KY, Holden JM, Morris JS (1996) Use of selenium concentration in whole blood, serum, toenails, or urine as a surrogate measure of selenium intake. Epidemiology 7:384–390

    CAS  PubMed  Google Scholar 

  149. Ellis R, Herdt T, Stowe H (1997) Physical, hematologic, biochemical, and immunologic effects of supranutritional supplementation with dietary selenium in Holstein cows. Am J Vet Res 58(7):760–764

    CAS  PubMed  Google Scholar 

  150. Dargatz D, Ross P (1996) Blood selenium concentrations in cows and heifers on 253 cow-calf operations in 18 states. J Anim Sci 74(12):2891–2895

    CAS  PubMed  Google Scholar 

  151. Mousaie A, Valizadeh R, Naserian AA, Heidarpour M, Mehrjerdi HK (2014) Impacts of feeding selenium-methionine and chromium-methionine on performance, serum components, antioxidant status, and physiological responses to transportation stress of baluchi ewe lambs. Biol Trace Elem Res 162(1-3):113–123

    CAS  PubMed  Google Scholar 

  152. Mudgal V, Garg AK, Dass RS, Varshney VP (2008) Effect of selenium and copper supplementation on blood metabolic profile in male buffalo (Bubalus bubalis) calves. Biol Trace Elem Res 121(1):31–38

    CAS  PubMed  Google Scholar 

  153. Han L, Pang K, Fu T, Phillips CJ, Gao T (2020) Nano-selenium supplementation increases selenoprotein (Sel) gene expression profiles and milk selenium concentration in lactating dairy cows. Biol Trace Elem Res:1–7

  154. Sun L, Wang F, Wu Z, Ma L, Baumrucker C, Bu D (2020) Comparison of selenium source in preventing oxidative stress in bovine mammary epithelial cells. Animals 10(5):842

    PubMed Central  Google Scholar 

  155. Novoselec J, Šperanda M, Klir Ž, Mioč B, Steiner Z, Antunović Z (2017) Blood biochemical indicators and concentration of thyroid hormones in heavily pregnant and lactating ewes depending on selenium supplementation. Acta Vet Brno 86(4):353–363

    Google Scholar 

  156. Reczyńska D, Witek B, Jarczak J, Czopowicz M, Mickiewicz M, Kaba J, Zwierzchowski L, Bagnicka E (2019) The impact of organic vs. inorganic selenium on dairy goat productivity and expression of selected genes in milk somatic cells. J Dairy Res 86(1):48–54

    PubMed  Google Scholar 

  157. De K, Sahoo A, Shekhawat I, Kumawat P, Kumar D, Naqvi S (2017) Effect of selenium-yeast feeding on amelioration of simulated heat stress and reproductive performance in Malpura ewe under semi-arid tropical environment. Indian J Anim Sci 87(2):163–167

    CAS  Google Scholar 

  158. Abbasi B, Malhi M, Ali Siyal F, Arain M, Bhutto Z, Soomro S, Rui R (2018) Influence of dietary selenium yeast on fermentation pattern mucosal growth and glutathione peroxidase (gsh-px) activity in colon of goat. J Dairy Vet Anim Res 6:253–259

    Google Scholar 

  159. Suganthi R, Ghosh J, Malik P, Awachat V, Krishnamoorthy P, Pal D, Nongkhlaw S (2019) Effect of dietary organic selenium (Se) on immune response, hepatic antioxidant status, selenoprotein gene expression and meat oxidative stability in lambs. J Anim Feed Sci 28(2):138–148

    Google Scholar 

  160. Jaaf S, Batty B, Krueger A, Estill CT, Bionaz M (2020) Selenium biofortified alfalfa hay fed in low quantities improves selenium status and glutathione peroxidase activity in transition dairy cows and their calves. J Dairy Res:1–7

  161. Gong J, Xiao M (2018) Effect of organic selenium supplementation on selenium status, oxidative stress, and antioxidant status in selenium-adequate dairy cows during the periparturient period. Biol Trace Elem Res 186(2):430–440

    CAS  PubMed  Google Scholar 

  162. Erdoğan S, Karadaş F, Yılmaz A, Karaca S (2017) The effect of organic selenium in feeding of ewes in late pregnancy on selenium transfer to progeny. Rev Bras Zootec 46(2):147–155

    Google Scholar 

  163. Nedelkov K, Chen X, Martins C, Melgar A, Harper M, Räisänen S, Oh J, Felix T, Wall E, Hristov A (2020) Alternative selenium supplement for sheep. Anim Feed Sci Technol 261:114390

    CAS  Google Scholar 

  164. Saadi A, Dalir-Naghadeh B, Asri-Rezaei S, Anassori E (2020) Platelet selenium indices as useful diagnostic surrogate for assessment of selenium status in lambs: an experimental comparative study on the efficacy of sodium selenite vs. selenium nanoparticles. Biol Trace Elem Res 194(2):401–409

    CAS  PubMed  Google Scholar 

  165. Kachuee R, Abdi-Benemar H, Mansoori Y, Sánchez-Aparicio P, Seifdavati J, Elghandour MM, Guillén RJ, Salem AZ (2019) Effects of sodium selenite, L-selenomethionine, and selenium nanoparticles during late pregnancy on selenium, zinc, copper, and iron concentrations in Khalkhali Goats and their kids. Biol Trace Elem Res 191(2):389–402

    CAS  PubMed  Google Scholar 

  166. Biazus AH, Cazarotto CJ, Machado G, Bottari NB, Alves MS, Morsch VM, Schetinger MR, Leal ML, Fernandes NF, Moresco RN (2019) Diphenyl diselenide subcutaneous supplementation of dairy sheep: effects on oxidant and antioxidant status, inflammatory response and milk composition. Anim Prod Sci 59(3):461–470

    CAS  Google Scholar 

  167. Gong J, Xiao M (2016) Selenium and antioxidant status in dairy cows at different stages of lactation. Biol Trace Elem Res 171(1):89–93

    CAS  PubMed  Google Scholar 

  168. Chorfi Y, Girard V, Fournier A, Couture Y (2011) Effect of subcutaneous selenium injection and supplementary selenium source on blood selenium and glutathione peroxidase in feedlot heifers. Can Vet J 52(10):1089

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wang D, Jia D, He R, Lian S, Wang J, Wu R (2020) Association between serum selenium level and subclinical mastitis in dairy cattle. Biol Trace Elem Res 198:1–8

    PubMed  Google Scholar 

  170. Chauhan SS, Celi P, Ponnampalam EN, Leury BJ, Liu F, Dunshea FR (2014) Antioxidant dynamics in the live animal and implications for ruminant health and product (meat/milk) quality: role of vitamin E and selenium. Anim Prod Sci 54(10):1525–1536

    CAS  Google Scholar 

  171. Malbe M, Klaassen M, Fang W, Myllys V, Vikerpuur M, Nyholm K, Sankari S, Suoranta K, Sandholm M (1995) Comparisons of selenite and selenium yeast feed supplements on Se-incorporation, mastitis and leucocyte function in Se-deficient dairy cows. J Veterinary Med Ser A 42(1-10):111–121

    CAS  Google Scholar 

  172. Kincaid R, Cronrath D (2001) Source of dietary selenium on tissue retention and mobilization of selenium in growing heifers. J Anim Sci 79(Suppl 1):87(Abs)

    Google Scholar 

  173. Kafilzadeh F, Kheirmanesh H, Karami Shabankareh H, Targhibi MR, Maleki E, Ebrahimi M, Yong Meng G (2014) Comparing the effect of oral supplementation of vitamin E, injective vitamin e and selenium or both during late pregnancy on production and reproductive performance and immune function of dairy cows and calves. Sci World J 2014:1–5

    Google Scholar 

  174. Horký P (2015) Effect of selenium on its content in milk and performance of dairy cows in ecological farming. Potravinarstvo Slovak J Food Sci 9(1):324–329

    Google Scholar 

  175. Fairweather-Tait SJ, Collings R, Hurst R (2010) Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 91(5):1484S–1491S

    CAS  PubMed  Google Scholar 

  176. Meyer U, Heerdegen K, Schenkel H, Dänicke S, Flachowsky G (2014) Influence of various selenium sources on selenium concentration in the milk of dairy cows. J Verbr Lebensm 9(2):101–109

    CAS  Google Scholar 

  177. Qazi IH, Angel C, Yang H, Pan B, Zoidis E, Zeng C-J, Han H, Zhou G-B (2018) Selenium, selenoproteins, and female reproduction: a review. Molecules 23(12):3053

    PubMed Central  Google Scholar 

  178. Palani ZM, Ahmed KA, Saeed EA, Hama KM, Rasheed AM, Hamid BS (2019) Effect of selenium or zinc feed supplementation on some physiological characters in blood of Kurdi male lambs. J Anim Poult Prod 10(4):95–98

    Google Scholar 

  179. Farahavar A, Rostami Z, Alipour D, Ahmadi A (2020) The effect of pre-breeding vitamin E and selenium injection on reproductive performance, antioxidant status, and progesterone concentration in estrus-synchronized Mehraban ewes. Trop Anim Health Prod:1–8

  180. Awawdeh M, Eljarah A, Ababneh M (2019) Multiple injections of vitamin E and selenium improved the reproductive performance of estrus-synchronized Awassi ewes. Trop Anim Health Prod 51(6):1421–1426

    CAS  PubMed  Google Scholar 

  181. Díaz-Sánchez VM, Rodríguez-Patiño G, Álvarez-Ávila G, Ramírez-Bribiesca JE, Silva-Mendoza R, Revilla-Vazquez AL, López-Arellano R, Tórtora-Pérez JL (2020) Evaluation of intraruminal boluses dosed with sulfamethazine and selenium in goat kids naturally infected with Eimeria spp. J Appl Anim Res 48(1):244–251

    Google Scholar 

  182. Ghorbani A, Moeini MM, Souri M, Hajarian H (2018) Influences of dietary selenium, zinc and their combination on semen characteristics and testosterone concentration in mature rams during breeding season. J Appl Anim Res 46(1):813–819

    CAS  Google Scholar 

  183. El-Hafez A, Solouma G, Kassab A, Ali A (2016) Some reproductive performance of male lambs and feeding values of rations as affected by supplementation of different selenium sources. Egypt J Nutr Feeds 19(1):103–114

    Google Scholar 

  184. Lizarraga RM, Anchordoquy JM, Galarza EM, Farnetano NA, Carranza-Martin A, Furnus CC, Mattioli GA, Anchordoquy JP (2019) Sodium selenite improves in vitro maturation of Bos primigenius taurus oocytes. Biol Trace Elem Res:1–10

  185. Marai IFM, El-Darawany A-H, Ismail E, Abdel-Hafez MAM (2009) Reproductive and physiological traits of Egyptian Suffolk rams as affected by selenium dietary supplementation and housing heat radiation effects during winter of the sub-tropical environment of Egypt. Arch Anim Breeding 52(4):402–409

    CAS  Google Scholar 

  186. Ceko M, Hummitzsch K, Hatzirodos N, Bonner W, Aitken J, Russell D, Lane M, Rodgers R, Harris H (2015) Correction: X-Ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics 7(1):188–188

    CAS  PubMed  Google Scholar 

  187. Kommisrud E, Østerås O, Vatn T (2005) Blood selenium associated with health and fertility in Norwegian dairy herds. Acta Vet Scand 46(4):229–240

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Wu X, Yao J, Yang Z, Yue W, Ren Y, Zhang C, Liu X, Wang H, Zhao X, Yuan S (2011) Improved fetal hair follicle development by maternal supplement of selenium at nano size (Nano-Se). Livest Sci 142(1-3):270–275

    Google Scholar 

  189. Wilde D (2006) Influence of macro and micro minerals in the peri-parturient period on fertility in dairy cattle. Anim Reprod Sci 96(3-4):240–249

    CAS  PubMed  Google Scholar 

  190. Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz M, Iqbal Z (2014) Role of selenium in male reproduction—A review. Anim Reprod Sci 146(1-2):55–62

    CAS  PubMed  Google Scholar 

  191. Smith KL, Hogan J, Weiss W (1997) Dietary vitamin E and selenium affect mastitis and milk quality. J Anim Sci 75(6):1659–1665

    CAS  PubMed  Google Scholar 

  192. Oliver S, Calvinho L (1995) Influence of inflammation on mammary gland metabolism and milk composition. J Anim Sci 73(suppl_2):18–33

    Google Scholar 

  193. Rajala-Schultz P, Gröhn Y, McCulloch C, Guard C (1999) Effects of clinical mastitis on milk yield in dairy cows. J Dairy Sci 82(6):1213–1220

    CAS  PubMed  Google Scholar 

  194. Cao Y-Z, Maddox JF, Mastro AM, Scholz RW, Hildenbrandt G, Reddy CC (1992) Selenium deficiency alters the lipoxygenase pathway and mitogenic response in bovine lymphocytes. J Nutr 122(11):2121–2127

    CAS  PubMed  Google Scholar 

  195. Burton JL, Erskine RJ (2003) Immunity and mastitis some new ideas for an old disease. Vet Clin Food Anim Pract 19(1):1–45

    Google Scholar 

  196. Colitti M, Stefanon B (2006) Effect of natural antioxidants on superoxide dismutase and glutathione peroxidase mRNA expression in leukocytes from periparturient dairy cows. Vet Res Commun 30(1):19–27

    CAS  PubMed  Google Scholar 

  197. Ceballos-Marquez A, Barkema H, Stryhn H, Dohoo I, Keefe G, Wichtel J (2010) Milk selenium concentration and its association with udder health in Atlantic Canadian dairy herds. J Dairy Sci 93(10):4700–4709

    CAS  PubMed  Google Scholar 

  198. Valckenier D, Piepers S, De Visscher A, Bruckmaier R, De Vliegher S (2019) Effect of intramammary infection with non-aureus staphylococci in early lactation in dairy heifers on quarter somatic cell count and quarter milk yield during the first 4 months of lactation. J Dairy Sci 102(7):6442–6453

    CAS  PubMed  Google Scholar 

  199. Vanderhaeghen W, Piepers S, Leroy F, Van Coillie E, Haesebrouck F, De Vliegher S (2015) Identification, typing, ecology and epidemiology of coagulase negative staphylococci associated with ruminants. Vet J 203(1):44–51

    PubMed  Google Scholar 

  200. Zhuang C, Liu G, Barkema HW, Zhou M, Xu S, Liu Y, Kastelic JP, Gao J, Han B (2020) Selenomethionine suppressed TLR4/NF-κB pathway by activating selenoprotein S to alleviate ESBL Escherichia coli-induced inflammation in bovine mammary epithelial cells and macrophages. Front Microbiol 11:1461

    PubMed  PubMed Central  Google Scholar 

  201. Knowles S, Grace N, Knight T, McNabb W, Lee J (2004) Adding nutritional value to meatand milk from pasture-fed livestock. N Z Vet J 52(6):342–351

    CAS  PubMed  Google Scholar 

  202. Ceballos A, Sánchez J, Stryhn H, Montgomery J, Barkema H, Wichtel J (2009) Meta-analysis of the effect of oral selenium supplementation on milk selenium concentration in cattle. J Dairy Sci 92(1):324–342

    CAS  PubMed  Google Scholar 

  203. Pieszka M, Bederska-Łojewska D, Szczurek P, Pieszka M (2019) The Membrane Interactions of Nano-Silica and Its Potential Application in Animal Nutrition. Animals 9(12):1041

    PubMed Central  Google Scholar 

  204. Gopi M, Beulah P, Dhinesh Kumar R, Shanmathy M, Prabakar G (2017) Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing

  205. Surai PF, Kochish II, Velichko OA (2017) Nano-Se assimilation and action in poultry and other monogastric animals: is gut microbiota an answer? Nanoscale Res Lett 12(1):1–7

    CAS  Google Scholar 

  206. Ghaderzadeh S, Mirzaei Aghjegheshlagh F, Nikbin S, Navidshad B (2019) Correlation effects of nano selenium and conjugated linoleic acid on the performance, lipid metabolism and immune system of male Moghani lambs. Iran J Appl Anim Sci 9(3):443–451

    CAS  Google Scholar 

  207. Shen X, Min X, Zhang S, Song C, Xiong K (2020) Effect of heavy metal contamination in the environment on antioxidant function in Wumeng semi-fine wool sheep in Southwest China. Biol Trace Elem Res:1–10

  208. Shahin MA, Khalil WA, Saadeldin IM, Swelum AA-A, El-Harairy MA (2020) Comparison between the effects of adding vitamins, trace elements, and nanoparticles to shotor extender on the cryopreservation of dromedary camel epididymal spermatozoa. Animals 10(1):78

    PubMed Central  Google Scholar 

  209. Hashem NM, Gonzalez-Bulnes A (2020) State-of-the-art and prospective of nanotechnologies for smart reproductive management of farm animals. Animals 10(5):840

    PubMed Central  Google Scholar 

  210. Khalil WA, El-Harairy MA, Zeidan AE, Hassan MA (2019) Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation. Theriogenology 126:121–127

    CAS  PubMed  Google Scholar 

  211. Hozyen HF, El Shamy AA Screening of genotoxicity and oxidative stress effect of selenium nanoparticles on ram spermatozoa

  212. Peris-Frau P, Soler AJ, Iniesta-Cuerda M, Martín-Maestro A, Sánchez-Ajofrín I, Medina-Chávez DA, Fernández-Santos MR, García-Álvarez O, Maroto-Morales A, Montoro V (2020) Sperm cryodamage in ruminants: understanding the molecular changes induced by the cryopreservation process to optimize sperm quality. Int J Mol Sci 21(8):2781

    CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiz-ul Hassan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, M.A., Ebeid, H.M. & Hassan, Fu. Revisiting the Effects of Different Dietary Sources of Selenium on the Health and Performance of Dairy Animals: a Review. Biol Trace Elem Res 199, 3319–3337 (2021). https://doi.org/10.1007/s12011-020-02480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02480-6

Keywords

Navigation