Skip to main content
Log in

A Quantitative Assessment and Biomagnification of Mercury and Its Associated Health Risks from Fish Consumption in Freshwater Lakes of Azad Kashmir, Pakistan

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Issues regarding biomagnification of mercury (Hg) due to its persistence, bioaccumulation, and toxicity in freshwater lakes have gained much attention in the last two decades especially in remote regions of the world where anthropogenic inputs are considered as negligible. In this study, spatial distribution of total mercury (THg), interspecific accumulation patterns, trophic transfer, and associated health risks in fish of freshwater lakes (357–3107 masl) in Azad Kashmir, Pakistan, were investigated. THg concentrations in the regions were 0.20 ± 0.08 μg g−1 in glacial, 0.54 ± 0.21 μg g−1 in rural, and 1.35 ± 0.46 μg g−1 in urban region. Omnivorous, herbivorous, and carnivorous fish showed THg concentrations of 0.94, 0.85, and 0.49 μg g−1. Regional, lake, trophic level, and specie-specific differences of THg accumulation were found significant in the study. Among growth parameters, length and age varied significantly among species, trophic levels, and lakes, whereas weight showed significant variation among lakes as well. Condition factor (K) showed significant differences within species, lakes, and trophic levels. Biomagnification was observed in all lakes with the trophic magnification slopes (TMS) ranging from 0.03 to 0.20 with an average of 0.094 ± 0.07. Isotopic values of nitrogen (δ15N) and condition factor were found to dominate THg accumulation trends; however, no significant health risks were found in the study.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASTDR:

Agency for Toxic Substances and Disease Registry

Hg:

Mercury

LRAT:

Long-range atmospheric transport

SPL:

Substance Priority List

THg:

Total mercury

TMF:

Trophic magnification factor

TMS:

Trophic magnification slope

References

  1. Belger L, Forsberg BR (2006) Factors controlling Hg levels in two predatory fish species in the Negro river basin, Brazilian Amazon. Sci Total Environ 367(1):451–459

    CAS  PubMed  Google Scholar 

  2. Jinadasa B, Fowler SW (2019) Critical review of mercury contamination in Sri Lankan fish and aquatic products. Mar Pollut Bull 149:110526

    CAS  PubMed  Google Scholar 

  3. Zhang Q, Pan K, Kang S, Zhu A, Wang W-X (2014) Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau. Environ Sci Technol 48(9):5220–5228

    CAS  PubMed  Google Scholar 

  4. Nimick DA, Caldwell RR, Skaar DR, Selch TM (2013) Fate of geothermal mercury from Yellowstone National Park in the Madison and Missouri Rivers, USA. Sci Total Environ 443:40–54

    CAS  PubMed  Google Scholar 

  5. Shao J, Shi J, Duo B, Liu C, Gao Y, Fu J, Yang R, Jiang G (2016) Mercury in alpine fish from four rivers in the Tibetan Plateau. J Environ Sci 39:22–28

    CAS  Google Scholar 

  6. Ha E, Basu N, Bose-O’Reilly S, Dórea JG, McSorley E, Sakamoto M, Chan HM (2017) Current progress on understanding the impact of mercury on human health. Environ Res 152:419–433

    CAS  PubMed  Google Scholar 

  7. Evers DC, Burgess NM, Champoux L, Hoskins B, Major A, Goodale WM, Taylor RJ, Poppenga R, Daigle T (2005) Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. Ecotoxicology 14(1-2):193–221

    CAS  PubMed  Google Scholar 

  8. Monikh FA, Karami O, Hosseini M, Karami N, Bastami AA, Ghasemi AF (2013) The effect of primary producers of experimental aquatic food chains on mercury and PCB153 biomagnification. Ecotoxicol Environ Saf 94:112–115

    PubMed  Google Scholar 

  9. ASTDR (2017) Substance Priority List. http://www.atsdr.cdc.gov/SPL/. Accessed 14 Nov 2020

  10. WHO (2017) Mercury and health. https://www.who.int/news-room/fact-sheets/detail/mercury-and-health. Accessed 22-03-2020

  11. Monroy M, Maceda-Veiga A, de Sostoa A (2014) Metal concentration in water, sediment and four fish species from Lake Titicaca reveals a large-scale environmental concern. Sci Total Environ 487:233–244

    CAS  PubMed  Google Scholar 

  12. Baker MR, Schindler DE, Holtgrieve GW, St. Louis VL (2009) Bioaccumulation and transport of contaminants: migrating sockeye salmon as vectors of mercury. Environ Sci Technol 43(23):8840–8846

    CAS  PubMed  Google Scholar 

  13. Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. AMBIO 36(1):3–11

    CAS  PubMed  Google Scholar 

  14. Monferrán MV, Garnero P, de los Angeles Bistoni M, Anbar AA, Gordon GW, Wunderlin DA (2016) From water to edible fish. Transfer of metals and metalloids in the San Roque Reservoir (Córdoba, Argentina). Implications associated with fish consumption. Ecol Indic 63:48–60

    Google Scholar 

  15. Bradley MA, Barst BD, Basu N (2017) A review of mercury bioavailability in humans and fish. Int J Environ Res Public Health 14(2):169

    PubMed Central  Google Scholar 

  16. Arcagni M, Juncos R, Rizzo A, Pavlin M, Fajon V, Arribére MA, Horvat M, Guevara SR (2018) Species-and habitat-specific bioaccumulation of total mercury and methylmercury in the food web of a deep oligotrophic lake. Sci Total Environ 612:1311–1319

    CAS  PubMed  Google Scholar 

  17. Kidd KA, Muir DC, Evans MS, Wang X, Whittle M, Swanson HK, Johnston T, Guildford S (2012) Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics. Sci Total Environ 438:135–143

    CAS  PubMed  Google Scholar 

  18. Eagles-Smith CA, Ackerman JT, Willacker JJ, Tate MT, Lutz MA, Fleck JA, Stewart AR, Wiener JG, Evers DC, Lepak JM (2016) Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada. Sci Total Environ 568:1171–1184

    CAS  PubMed  Google Scholar 

  19. Lescord GL, Kidd KA, Kirk JL, O’Driscoll NJ, Wang X, Muir DC (2015) Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic. Sci Total Environ 509:195–205

    PubMed  Google Scholar 

  20. Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47(23):13385–13394

    CAS  PubMed  Google Scholar 

  21. Ethier A, Scheuhammer A, Bond D (2008) Correlates of mercury in fish from lakes near Clyde Forks, Ontario, Canada. Environ Pollut 154(1):89–97

    CAS  PubMed  Google Scholar 

  22. Økelsrud A, Lydersen E, Fjeld E (2016) Biomagnification of mercury and selenium in two lakes in southern Norway. Sci Total Environ 566:596–607

    PubMed  Google Scholar 

  23. Lavigne M, Lucotte M, Paquet S (2010) Relationship between mercury concentration and growth rates for walleyes, northern pike, and lake trout from Quebec lakes. N Am J Fish Manag 30(5):1221–1237

    Google Scholar 

  24. Schafer HA, Hershelman GP, Young DR, Mearns AJ (1981) Contaminants in ocean food webs. Coast Water Res Pro Bienn Rep Years 1982:17–28

    Google Scholar 

  25. Verdouw JJ, Macleod CK, Nowak BF, Lyle JM (2011) Implications of age, size and region on mercury contamination in estuarine fish species. Water Air Soil Pollut 214(1-4):297–306

    CAS  Google Scholar 

  26. Castilhos Z, Rodrigues-Filho S, Cesar R, Rodrigues AP, Villas-Bôas R, de Jesus I, Lima M, Faial K, Miranda A, Brabo E (2015) Human exposure and risk assessment associated with mercury contamination in artisanal gold mining areas in the Brazilian Amazon. Environ Sci Pollut Res 22(15):11255–11264

    CAS  Google Scholar 

  27. Liu G, Cai Y, O'Driscoll N (2011) Environmental chemistry and toxicology of mercury. John Wiley & Sons, Inc., Hoboken

  28. Rognerud S, Grimalt J, Rosseland B, Fernandez P, Hofer R, Lackner R, Lauritzen B, Lien L, Massabuau J, Ribes A (2002) Mercury and organochlorine contamination in brown trout (Salmo trutta) and arctic charr (Salvelinus alpinus) from high mountain lakes in Europe and the Svalbard archipelago. Water Air Soil Pollut 2(2):209–232

    CAS  Google Scholar 

  29. Blais JM, Charpentié S, Pick F, Kimpe LE, Amand AS, Regnault-Roger C (2006) Mercury, polybrominated diphenyl ether, organochlorine pesticide, and polychlorinated biphenyl concentrations in fish from lakes along an elevation transect in the French Pyrénées. Ecotoxicol Environ Saf 63(1):91–99

    CAS  PubMed  Google Scholar 

  30. Marusczak N, Larose C, Dommergue A, Paquet S, Beaulne J-S, Maury-Brachet R, Lucotte M, Nedjai R, Ferrari CP (2011) Mercury and methylmercury concentrations in high altitude lakes and fish (Arctic charr) from the French Alps related to watershed characteristics. Sci Total Environ 409(10):1909–1915

    CAS  PubMed  Google Scholar 

  31. Drevnick PE, Roberts AP, Otter RR, Hammerschmidt CR, Klaper R, Oris JT (2008) Mercury toxicity in livers of northern pike (Esox lucius) from Isle Royale, USA. Comp Biochem Physiol C Toxicol Pharmacol 147(3):331–338

    PubMed  Google Scholar 

  32. Lindeberg C, Bindler R, Bigler C, Rosén P, Renberg I (2007) Mercury pollution trends in subarctic lakes in the northern Swedish mountains. AMBIO 36(5):401–405

    CAS  PubMed  Google Scholar 

  33. Drenner RW, Chumchal MM, Jones CM, Lehmann CM, Gay DA, Donato DI (2013) Effects of mercury deposition and coniferous forests on the mercury contamination of fish in the South Central United States. Environ Sci Technol 47(3):1274–1279

    CAS  PubMed  Google Scholar 

  34. Shanley JB, Bishop K (2012) Mercury cycling in terrestrial watersheds. Mercury in the Environment: Pattern and Process

  35. Zhang H, R-s Y, X-b F, Sommar J, Anderson CW, Sapkota A, X-w F, Larssen T (2013) Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures. Sci Rep 3:3322

    PubMed  PubMed Central  Google Scholar 

  36. Phillips VJ, St. Louis VL, Cooke CA, Vinebrooke RD, Hobbs WO (2011) Increased mercury loadings to western Canadian alpine lakes over the past 150 years. Environ Sci Technol 45(6):2042–2047

    CAS  PubMed  Google Scholar 

  37. Szopka K, Karczewska A, Kabała C (2011) Mercury accumulation in the surface layers of mountain soils: a case study from the Karkonosze Mountains, Poland. Chemosphere 83(11):1507–1512

    CAS  PubMed  Google Scholar 

  38. Fu X, Feng X, Dong Z, Yin R, Wang J, Yang Z, Zhang H (2010) Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China. Atmos Chem Phys 10(5):2425–2437

    CAS  Google Scholar 

  39. Pirrone N, Cinnirella S, Feng X, Finkelman R, Friedli H, Leaner J, Mason R, Mukherjee A, Stracher G, Streets D (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10(13):5951–5964

    CAS  Google Scholar 

  40. Chen CY, Dionne M, Mayes BM, Ward DM, Sturup S, Jackson BP (2009) Mercury bioavailability and bioaccumulation in estuarine food webs in the Gulf of Maine. Environ Sci Technol 43(6):1804–1810

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Razavi NR, Arts MT, Qu M, Jin B, Ren W, Wang Y, Campbell LM (2014) Effect of eutrophication on mercury, selenium, and essential fatty acids in Bighead Carp (Hypophthalmichthys nobilis) from reservoirs of eastern China. Sci Total Environ 499:36–46

    CAS  PubMed  Google Scholar 

  42. Azevedo-Silva CE, Almeida R, Carvalho DP, Ometto JP, de Camargo PB, Dorneles PR, Azeredo A, Bastos WR, Malm O, Torres JP (2016) Mercury biomagnification and the trophic structure of the ichthyofauna from a remote lake in the Brazilian Amazon. Environ Res 151:286–296

    CAS  PubMed  Google Scholar 

  43. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47(10):4967–4983

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Blackwell BD, Driscoll CT (2015) Deposition of mercury in forests along a montane elevation gradient. Environ Sci Technol 49(9):5363–5370

    CAS  PubMed  Google Scholar 

  45. Li P, Feng X, Qiu G, Shang L, Li Z (2009) Mercury pollution in Asia: a review of the contaminated sites. J Hazard Mater 168(2-3):591–601

    CAS  PubMed  Google Scholar 

  46. Fliedner A, Rüdel H, Knopf B, Weinfurtner K, Paulus M, Ricking M, Koschorreck J (2014) Spatial and temporal trends of metals and arsenic in German freshwater compartments. Environ Sci Pollut Res 21(8):5521–5536

    CAS  Google Scholar 

  47. Ali U, Sweetman AJ, Riaz R, Li J, Zhang G, Jones KC, Malik RN (2018) Sedimentary black carbon and organochlorines in Lesser Himalayan Region of Pakistan: relationship along the altitude. Sci Total Environ 621:1568–1580

    CAS  PubMed  Google Scholar 

  48. Horká P, Ibbotson A, Jones J, Cove R, Scott L (2010) Validation of scale-age determination in European grayling Thymallus thymallus using tag-recapture analysis. J Fish Biol 77(1):153–161

    PubMed  Google Scholar 

  49. Lomonte C, Gregory D, Baker AJ, Kolev SD (2008) Comparative study of hotplate wet digestion methods for the determination of mercury in biosolids. Chemosphere 72(10):1420–1424

    CAS  PubMed  Google Scholar 

  50. Bremner JM, Keeney DR (1965) Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal Chim Acta 32:485–495. https://doi.org/10.1016/S0003-2670(00)88973-4

    Article  CAS  Google Scholar 

  51. Jin S, Yan X, Zhang H, Fan W (2015) Weight–length relationships and Fulton’s condition factors of skipjack tuna (Katsuwonus pelamis) in the western and central Pacific Ocean. PeerJ 3:e758

    PubMed  PubMed Central  Google Scholar 

  52. Łuczyńska J, Paszczyk B, Łuczyński MJ (2018) Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer’s health. Ecotoxicol Environ Saf 153:60–67

    PubMed  Google Scholar 

  53. Ali H, Khan E (2018) Assessment of potentially toxic heavy metals and health risk in water, sediments, and different fish species of River Kabul, Pakistan. Hum Eco Risk Assess Int J 24(8):2101–2118

    CAS  Google Scholar 

  54. FAO F (2012) Agriculture Organization of the United Nations. 2012. FAO statistical yearbook

  55. Mahmood A, Malik RN, Li J, Zhang G (2014) Human health risk assessment and dietary intake of organochlorine pesticides through air, soil and food crops (wheat and rice) along two tributaries of river Chenab, Pakistan. Food Chem Toxicol 71:17–25

    CAS  PubMed  Google Scholar 

  56. USEPA (2014) Methylmercury (MeHg) (CASRN 22967-92-6). Referenced dose for chronic oral exposure (RfD) integrated risk information system. https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=73. Accessed 1/04 2020

  57. USEPA (2014) HHRAP: Chapter 7 Characterizing Risk and Hazard | US EPA ARCHIVE DOCUMENT https://archive.epa.gov/epawaste/hazard/tsd/td/web/pdf/05hhrap7.pdf. Accessed 1/04 2020

  58. Nevado JB, Martín-Doimeadios RR, Bernardo FG, Moreno MJ, Herculano AM, Do Nascimento J, Crespo-López ME (2010) Mercury in the Tapajós River basin, Brazilian Amazon: a review. Environ Int 36(6):593–608

    Google Scholar 

  59. Økelsrud A, Lydersen E, Moreno C, Fjeld E (2017) Mercury and selenium in free-ranging brown trout (Salmo trutta) in the River Skienselva watercourse, Southern Norway. Sci Total Environ 586:188–196

    PubMed  Google Scholar 

  60. Poste AE, Muir DC, Guildford SJ, Hecky RE (2015) Bioaccumulation and biomagnification of mercury in African lakes: the importance of trophic status. Sci Total Environ 506:126–136

    PubMed  Google Scholar 

  61. Siddiqui M, Moinuddin A, Nasrullah K, Khan I (2010) A quantitative description of moist temperate conifer forests of Himalayan region of Pakistan and Azad kashmir. Int J Biol Biotechnol 7(3):175–185

    Google Scholar 

  62. Basharat M, Rohn J, Khan MR (2014) Effect of drawdown of Karli Lake, A Case Study of Karli landslide hazard in District Hattian, Northeast Himalayas of Pakistan. Life Sci J 11(9):610–616

    Google Scholar 

  63. Lino A, Kasper D, Guida Y, Thomaz J, Malm O (2018) Mercury and selenium in fishes from the Tapajós River in the Brazilian Amazon: an evaluation of human exposure. J Trace Elem Med Biol 48:196–201

    CAS  PubMed  Google Scholar 

  64. Anual ZF, Maher W, Krikowa F, Hakim L, Ahmad NI, Foster S (2018) Mercury and risk assessment from consumption of crustaceans, cephalopods and fish from West Peninsular Malaysia. Microchem J 140:214–221

    CAS  Google Scholar 

  65. Feng X, Meng B, Yan H, Fu X, Yao H, Shang L (2018) Biogeochemical cycle of mercury in reservoir systems in Wujiang River Basin. Springer, Southwest China

    Google Scholar 

  66. Cebalho EC, Díez S, dos Santos FM, Muniz CC, Lázaro W, Malm O, Ignácio AR (2017) Effects of small hydropower plants on mercury concentrations in fish. Environ Sci Pollut Res 24(28):22709–22716

    CAS  Google Scholar 

  67. Yohannes YB, Ikenaka Y, Nakayama SM, Saengtienchai A, Watanabe K, Ishizuka M (2013) Organochlorine pesticides and heavy metals in fish from Lake Awassa, Ethiopia: insights from stable isotope analysis. Chemosphere 91(6):857–863

    CAS  PubMed  Google Scholar 

  68. Arcagni M, Rizzo A, Juncos R, Pavlin M, Campbell LM, Arribére MA, Horvat M, Guevara SR (2017) Mercury and selenium in the food web of Lake Nahuel Huapi, Patagonia, Argentina. Chemosphere 166:163–173

    CAS  PubMed  Google Scholar 

  69. Yi Y, Zhang S (2012) The relationships between fish heavy metal concentrations and fish size in the upper and middle reach of Yangtze River. Procedia Environ Sci 13:1699–1707

    CAS  Google Scholar 

  70. Sackett DK, Cope WG, Rice JA, Aday DD (2013) The influence of fish length on tissue mercury dynamics: implications for natural resource management and human health risk. Int J Environ Res Public Health 10(2):638–659

    PubMed  PubMed Central  Google Scholar 

  71. Parente T, Hauser-Davis R (2013) The use of fish biomarkers in the evaluation of water pollution. In: de Almeida EA, & de Oliveira Ribeiro, C. A. (ed) Pollution and fish health in tropical ecosystems. CRC Press, Boca Raton, pp 164–181

  72. Ahmed AS, Sultana S, Habib A, Ullah H, Musa N, Hossain MB, Rahman MM, Sarker MSI (2019) Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS One 14(10):e0219336

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jardine TD, Kidd KA, O’Driscoll N (2013) Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams. Aquat Toxicol 132:46–52

    PubMed  Google Scholar 

  74. Lavoie RA, Hebert CE, Rail J-F, Braune BM, Yumvihoze E, Hill LG, Lean DR (2010) Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis. Sci Total Environ 408(22):5529–5539

    CAS  PubMed  Google Scholar 

  75. Saros JE, Rose KC, Clow DW, Stephens VC, Nurse AB, Arnett HA, Stone JR, Williamson CE, Wolfe AP (2010) Melting alpine glaciers enrich high-elevation lakes with reactive nitrogen. Environ Sci Technol 44(13):4891–4896

    CAS  PubMed  Google Scholar 

  76. Food, Nations AOotU (2012) The state of world fisheries and aquaculture. FAO Rome

  77. SCOOP E (2004) Report from Task 3.2. 11: assessment of the dietary exposure to arsenic, cadmium, lead and mercury of the population of the EU Member States. European Commission, Directorate-General Health and Consumer Protection SCOOP report

  78. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M (2011) Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378(9793):815–825

    PubMed  Google Scholar 

  79. Bogdanović T, Ujević I, Sedak M, Listeš E, Šimat V, Petričević S, Poljak V (2014) As, Cd, Hg and Pb in four edible shellfish species from breeding and harvesting areas along the eastern Adriatic Coast, Croatia. Food Chem 146:197–203

    PubMed  Google Scholar 

  80. Zhuang P, Z-a L, McBride MB, Zou B, Wang G (2013) Health risk assessment for consumption of fish originating from ponds near Dabaoshan mine, South China. Environ Sci Pollut Res 20(8):5844–5854

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Tariq Javed, principal scientist, Isotope Analysis Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), for aiding in the stable isotopic analysis of nitrogen. In addition, we deeply thank the Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, for the analysis of THg at their facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhat Hina.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A comparative study on distribution and biomagnification of THg in freshwater lakes

• Site and species-specific differences in THg accumulation were observed.

• Feeding modes and growth parameters explained variability in concentrations.

• Trophic transfer of THg was observed with regression slopes > 0.

• No significant health risk was found.

Supplementary Information

ESM 1

(DOCX 77.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hina, N., Riaz, R., Ali, U. et al. A Quantitative Assessment and Biomagnification of Mercury and Its Associated Health Risks from Fish Consumption in Freshwater Lakes of Azad Kashmir, Pakistan. Biol Trace Elem Res 199, 3510–3526 (2021). https://doi.org/10.1007/s12011-020-02479-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02479-z

Keywords

Navigation