Skip to main content
Log in

Potentially Toxic Elements (PTEs) in the Fillet of Narrow-Barred Spanish Mackerel (Scomberomorus commerson): a Global Systematic Review, Meta-analysis and Risk Assessment

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The contamination of seafood like narrow-barred Spanish mackerel (Scomberomorus commerson) fillets by potentially toxic elements (PTEs) has converted to worldwide health concerns. In this regard, the related citations regarding the concentration of PTEs in fillets of narrow-barred Spanish mackerel were collected through some of the international databases such as Scopus, Cochrane, PubMed, and Scientific Information Database (SID) up to 10 March 2020. The concentration of PTEs in fillets of narrow-barred Spanish mackerel fish was meta-analyzed and the health risk (non-carcinogenic risk) was estimated by the total target hazard quotient (TTHQ). The meta-analysis of data indicated that the rank order of PTEs in fillet of narrow-barred Spanish mackerel was Fe (10,853.29 μg/kg-ww) > Zn (4007.00 μg/kg-ww) > Cu (1005.66 μg/kg-ww) > total Cr (544.14 μg/kg-ww) > Mn (515.93 μg/kg-ww) > Ni (409.90 μg/kg-ww) > Pb (180.99 μg/kg-ww) > As (93.11 μg/kg-ww) > methyl Hg (66.60 μg/kg-ww) > Cd (66.03 μg/kg-ww). The rank order of health risk assessment based on the country by the aid of TTHQ for adult consumers was Malaysia (0.22251) > Philippines (0.21912) > Egypt (0.08684) > Taiwan (0.07430) > Bahrain (0.04893) > Iran (0.03528) > China (0.00620) > Pakistan (0.00316) > Yemen (0.00157) > India (0.00073). In addition, the rank order of health risk assessment based on the country by the aid of TTHQ for child consumers was Malaysia (1.03838) > Philippines (1.02257) > Egypt (0.40523) > Taiwan (0.34674) > Bahrain (0.22832) > Iran (0.16466) > China (0.02892) > Pakistan (0.01474) > Yemen (0.00731) > India (0.00340). Therefore, the children in Malaysia and the Philippines were at considerable non-carcinogenic risk. Hence, approaching the recommended control plans in order to decrease the non-carcinogenic risk associated with the ingestion of PTEs via the consumption of narrow-barred Spanish mackerel fish fillets is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Korkmaz C, Ay Ö, Ersoysal Y, Köroğlu MA, Erdem C (2019) Heavy metal levels in muscle tissues of some fish species caught from north-east Mediterranean: evaluation of their effects on human health. J Food Compos Anal 81:1–9

    CAS  Google Scholar 

  2. Fair PA, White ND, Wolf B, Arnott SA, Kannan K, Karthikraj R, Vena JE (2018) Persistent organic pollutants in fish from Charleston Harbor and tributaries, South Carolina, United States: a risk assessment. Environ Res 167:598–613

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Borzoei M, Zanjanchi MA, Sadeghi-aliabadi H, Saghaie L (2018) Optimization of a methodology for determination of iron concentration in aqueous samples using a newly synthesized chelating agent in dispersive liquid-liquid microextraction. Food Chem 264:9–15

    CAS  PubMed  Google Scholar 

  4. Mo WY, Man YB, Zhang F, Wong MH (2019) Fermented food waste for culturing jade perch and Nile tilapia: growth performance and health risk assessment based on metal/loids. J Environ Manag 236:236–244

    CAS  Google Scholar 

  5. Copat C, Arena G, Fiore M, Ledda C, Fallico R, Sciacca S, Ferrante M (2013) Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: consumption advisories. Food Chem Toxicol 53:33–37

    CAS  PubMed  Google Scholar 

  6. Fuentes-Gandara F, Herrera-Herrera C, Pinedo-Hernández J, Marrugo-Negrete J, Díez S (2018) Assessment of human health risk associated with methylmercury in the imported fish marketed in the Caribbean. Environ Res 165:324–329

    CAS  PubMed  Google Scholar 

  7. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S (2014) Executive summary: heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):399–410

    PubMed  Google Scholar 

  8. Hu FB, Manson JE, Willett WC (2001) Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr 20(1):5–19

    PubMed  Google Scholar 

  9. Korkmaz C, Ay Ö, Çolakfakioğlu C, Cicik B, Erdem C (2017) Heavy metal levels in muscle tissues of Solea solea, Mullus barbatus, and Sardina pilchardus marketed for consumption in Mersin, Turkey. Water Air Soil Pollut 228(8):315

    Google Scholar 

  10. Ferrante M, Zanghì G, Cristaldi A, Copat C, Grasso A, Fiore M, Signorelli SS, Zuccarello P, Conti GO (2018) PAHs in seafood from the Mediterranean Sea: an exposure risk assessment. Food Chem Toxicol 115:385–390

    CAS  PubMed  Google Scholar 

  11. Zhao YG, Wan HT, Law AY, Wei X, Huang YQ, Giesy JP, Wong MH, Wong CK (2011) Risk assessment for human consumption of perfluorinated compound-contaminated freshwater and marine fish from Hong Kong and Xiamen. Chemosphere 85(2):277–283

    CAS  PubMed  Google Scholar 

  12. Cobelo-Garcı́a A, Prego R, Labandeira A (2004) Land inputs of trace metals, major elements, particulate organic carbon and suspended solids to an industrial coastal bay of the NE Atlantic. Water Res 38 (7):1753–1764. https://doi.org/10.1016/j.watres.2003.12.038

  13. Korn MGA, dos Santos GL, Rosa SM, Teixeira LSG, de Oliveira PV (2010) Determination of cadmium and lead in cetacean Dolphinidae tissue from the coast of Bahia state in Brazil by GFAAS. Microchem J 96(1):12–16. https://doi.org/10.1016/j.microc.2010.01.001

    Article  CAS  Google Scholar 

  14. Tran TAM, Leermakers M, Hoang TL, Elskens M (2018) Metals and arsenic in sediment and fish from Cau Hai lagoon in Vietnam: ecological and human health risks. Chemosphere 210:175–182

    CAS  PubMed  Google Scholar 

  15. McEneff G, Quinn B, Bennion M, Dolan S, O'Rourke K, Morrison L (2017) Bioaccumulation of metals in juvenile rainbow trout (oncorhynchus mykiss) via dietary exposure to blue mussels. Chemosphere 188:548–556. https://doi.org/10.1016/j.chemosphere.2017.08.141

    Article  CAS  PubMed  Google Scholar 

  16. Borzoei M, Zanjanchi MA, Sadeghi-aliabadi H, Saghaie L (2019) Trace determination of Iron in real waters and fruit juice samples using rapid method: optimized dispersive liquid-liquid microextraction with synthesized nontoxic chelating agent. Biol Trace Elem Res 192(2):319–329

    CAS  PubMed  Google Scholar 

  17. Saha N, Mollah MZI, Alam MF, Safiur Rahman M (2016) Seasonal investigation of heavy metals in marine fishes captured from the Bay of Bengal and the implications for human health risk assessment. Food Control 70:110–118. https://doi.org/10.1016/j.foodcont.2016.05.040

    Article  CAS  Google Scholar 

  18. Ghaneian MT, Bhatnagar A, Ehrampoush MH, Amrollahi M, Jamshidi B, Dehvari M, Taghavi M (2017) Biosorption of hexavalent chromium from aqueous solution onto pomegranate seeds: kinetic modeling studies. Int J Environ Sci Technol 14(2):331–340. https://doi.org/10.1007/s13762-016-1216-8

    Article  CAS  Google Scholar 

  19. Djahed B, Taghavi M, Farzadkia M, Norzaee S, Miri M (2018) Stochastic exposure and health risk assessment of rice contamination to the heavy metals in the market of Iranshahr, Iran. Food and Chemical Toxicology

  20. Moradi A, Mirzaei R, Mr A, Bay A, Ghaderpoori M, Asadi A, Fakhri Y, Sorooshian A, Mousavi Khaneghah A (2020) The concentration, characteristics, and probabilistic health risk assessment of potentially toxic elements (PTEs) in street dust: a case study of Kashan, Iran. Toxin Rev 5(2):1–20

    Google Scholar 

  21. Fakhri Y, Mousavi Khaneghah A, Hadiani MR, Keramati H, Hosseini Pouya R, Moradi B, da Silva BS (2017) Non-carcinogenic risk assessment induced by heavy metals content of the bottled water in Iran. Toxin Rev 36(4):313–321

    CAS  Google Scholar 

  22. Khan A, Khan S, Khan MA, Qamar Z, Waqas M (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res 22(18):13772–13799

    CAS  Google Scholar 

  23. Fathabad AE, Shariatifar N, Moazzen M, Nazmara S, Fakhri Y, Alimohammadi M, Azari A, Khaneghah AM (2018) Determination of heavy metal content of processed fruit products from Tehran's market using ICP-OES: a risk assessment study. Food Chem Toxicol 115:436–446

    CAS  PubMed  Google Scholar 

  24. Rainer F, Daniel P (2018) Scomberomorus commerson in fish base

  25. Roa-Ureta RH, Lin Y-J, Rabaoui L, Al-Abdulkader K, Qurban MA (2019) Life history traits of the narrow-barred Spanish mackerel (Scomberemorus commerson) across jurisdictions of the southeast Arabian peninsula: implications for regional management policies. Reg Stud Mar Sci 31:100797

    Google Scholar 

  26. Grandcourt EM A review of the fisheries, biology, status and management of the narrow-barred Spanish mackerel (Scomberomorus commerson) in the Gulf Cooperation Council countries (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates)

  27. Motlagh SAT, Shojaei MG (2009) Population dynamics of narrow–barred Spanish mackerel (Scomberomorus commerson) in the Persian Gulf, Bushehr Province, Iran. Indian J Fish 56(1):7–11

    Google Scholar 

  28. Khoshnoud MJ, Mobini K, Javidnia K, Hosseinkhezri P, Aeen Jamshid KJIJoPS (2011) Heavy metals (Zn, Cu, Pb, Cd and Hg) contents and fatty acids ratios in two fish species (Scomberomorus commerson and Otolithes ruber) of the Persian Gulf 7 (3):191–196

  29. Khaled A (2009) Trace metals in fish of economic interest from the west of Alexandria. Egypt. 25(4):229–246

    CAS  Google Scholar 

  30. Musaiger AO, D’Souza RJPJBS (2008) Chemical composition of raw fish consumed in Bahrain 11:55–61

  31. Chien L-C, Yeh C-Y, Jiang C-B, Hsu C-S, Han B-CJC (2007) Estimation of acceptable mercury intake from fish in. Taiwan. 67(1):29–35

    CAS  Google Scholar 

  32. Saei-Dehkordi SS, Fallah AAJMJ (2011) Determination of copper, lead, cadmium and zinc content in commercially valuable fish species from the Persian Gulf using derivative potentiometric stripping analysis 98 (1):156–162

  33. Sobhanardakani S, Tayebi L, Farmany A, Cheraghi MJEm, assessment (2012) Analysis of trace elements (Cu, Cd, and Zn) in the muscle, gill, and liver tissues of some fish species using anodic stripping voltammetry 184 (11):6607–6611

  34. Gu Y-G, Lin Q, Wang X-H, Du F-Y, Yu Z-L, Huang H-HJMpb (2015) Heavy metal concentrations in wild fishes captured from the South China Sea and associated health risks 96 (1–2):508–512

  35. Pilehvarian AA, Malekirad AA, Bolandnazar N-S, Rezaei MJTr (2015) Heavy metal bioaccumulation in different fish species in the coast of the Persian Gulf, Iran. 34 (4):215–219

  36. Anual ZF, Maher W, Krikowa F, Hakim L, Ahmad NI, Foster SJMJ (2018) Mercury and risk assessment from consumption of crustaceans, cephalopods and fish from West Peninsular Malaysia. 140:214-221

  37. Khaled A (2004) Heavy metals concentrations in certain tissues of five commercially important fishes from El-Mex Bay. Alexandria, Egypt

    Google Scholar 

  38. Ahmed Q, Bat L, Yousuf F, Ali QM, Nazim KJOBSJ (2015) Accumulation of heavy metals (Fe, Mn, Cu, Zn, Ni, Pb, Cd and Cr) in tissues of narrow-barred Spanish mackerel (family-Scombridae) fish marketed by Karachi Fish Harbor. 1 (1)

  39. Sobhanardakani S, Tayebi L, Farmany AJWASJ (2011) Toxic metal (Pb, Hg and As) contamination of muscle, gill and liver tissues of Otolithes rubber, Pampus argenteus, Parastromateus niger, Scomberomorus commerson and Onchorynchus mykiss 14 (10):1453–1456

  40. Saei-Dehkordi SS, Fallah AA, Nematollahi AJF, Toxicology C (2010) Arsenic and mercury in commercially valuable fish species from the Persian Gulf: influence of season and habitat 48 (10):2945–2950

  41. Abdallah MAMJJoMS (2008) Trace element levels in some commercially valuable fish species from coastal waters of Mediterranean Sea, Egypt. 73 (1–2):114–122

  42. Sary AA, Velayatzadeh MJAiEB (2012) Lead and zinc levels in Scomberomorus guttatus, Scomberomorus commerson and Otolithes ruber from Hendijan, Iran.843-849

  43. Biswas S, Prabhu RK, Hussain KJ, Selvanayagam M, Satpathy KKJEm, assessment (2012) Heavy metals concentration in edible fishes from coastal region of Kalpakkam, southeastern part of India 184 (8):5097–5104

  44. Yasmeen K, Mirza MA, Khan NA, Kausar N, Rehman A-u, Hanif MJS (2016) Trace metals health risk appraisal in fish species of Arabian Sea. 5 (1):859

  45. Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions, vol 4. John Wiley & Sons,

  46. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7):15–25

    Google Scholar 

  47. Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology 80 (4):1150–1156. https://doi.org/10.1890/0012-9658(1999)080[1150:Tmaorr]2.0.Co;2

  48. FAO (2018) Fish and seafood consumption per capita. https://ourworldindata.org/grapher/fish-and-seafood-consumption-per-capita

  49. Njuguna SM, Makokha VA, Yan X, Gituru RW, Wang Q, Wang J (2019) Health risk assessment by consumption of vegetables irrigated with reclaimed waste water: a case study in Thika (Kenya). J Environ Manag 231:576–581. https://doi.org/10.1016/j.jenvman.2018.10.088

    Article  CAS  Google Scholar 

  50. Barnes DG, Dourson M, Preuss P, Bellin J, Derosa C, Engler R, Erdreich L, Farber T, Fenner-Crisp P, Francis E (1988) Reference dose (RfD): description and use in health risk assessments. Regul Toxicol Pharmacol 8(4):471–486

    CAS  PubMed  Google Scholar 

  51. EPA (2000) Risk-based concentration table. J Philadelphia PA: United States Environmental Protection Agency, Washington DC

  52. EPA (2011) Exposure factors handbook: 2011 edition. EPA/600/R-09,

  53. Quan H, Zhang J (2003) Estimate of standard deviation for a log-transformed variable using arithmetic means and standard deviations. Stat Med 22(17):2723–2736

    PubMed  Google Scholar 

  54. Higgins J, White IR, Anzures-Cabrera J (2008) Meta-analysis of skewed data: combining results reported on log-transformed or raw scales. Stat Med 27(29):6072–6092

    PubMed  PubMed Central  Google Scholar 

  55. Higgins., Thompson S (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21 (11):1539–1558

  56. Moradi Q, Mirzaei R, Alipour M, Bay A, Ghaderpoori M, Asadi A, Fakhri Y, Sorooshian A, Mousavi Khaneghah A (2020) The concentration, characteristics, and probabilistic health risk assessment of potentially toxic elements (PTEs) in street dust: a case study of Kashan, Iran. Toxin Rev:1–10

  57. Mostafaii GR, Moravveji A, Hajirostamloo B, Hesami Arani M, Dehghani M, Heidarinejad Z, Fakhri Y, Khaneghah AM (2020) The concentration and risk assessment of potentially toxic elements (PTEs) in unrefined salt: a case study of Aran and Bidgol Lake, Iran. Int J Environ Anal Chem :1–13

  58. Samiee S, Fakhri Y, Sadighara P, Arabameri M, Rezaei M, Nabizadeh R, Shariatifar N, Mousavi Khaneghah A (2020) The concentration of polycyclic aromatic hydrocarbons (PAHs) in the processed meat samples collected from Iran’s market: a probabilistic health risk assessment study. Environ Sci Pollut Res :1–14

  59. Fakhri Y, Nematollahi A, Abdi-Moghadam Z, Daraei H, Ghasemi SM (2020) Concentration of potentially harmful elements (PHEs) in trout fillet (rainbow and brown) fish: a global systematic review and meta-analysis and health risk assessment. Biol Trace Elem Res:1–13

  60. Pirsaheb M, Irandost M, Asadi F, Fakhri Y, Asadi A (2020) Evaluation of polycyclic aromatic hydrocarbons (PAHs) in fish: a review and meta-analysis. Toxin Rev 39(3):205–213

    Google Scholar 

  61. Varol M, Kaya GK, Alp SA, Sünbül MR (2018) Trace metal levels in rainbow trout (Oncorhynchus mykiss) cultured in net cages in a reservoir and evaluation of human health risks from consumption. Biol Trace Elem Res 184(1):268–278

    CAS  PubMed  Google Scholar 

  62. Cilingir-Yeltekin A (2018) Comparison of toxic metal, trace element and macro element levels in trout cultivated in Latvia and Turkey. FEB-FRESENIUS environmental bulletin:7039

  63. Heshmati A, Sadati R, Ghavami M, Khaneghah AM (2019) The concentration of potentially toxic elements (PTEs) in muscle tissue of farmed Iranian rainbow trout (Oncorhynchus mykiss), feed, and water samples collected from the west of Iran: a risk assessment study. Environ Sci Pollut Res 26(33):34584–34593

    CAS  Google Scholar 

  64. Barrientos C, Tapia J, Bertrán C, Peña-Cortés F, Hauenstein E, Fierro P, Vargas-Chacoff L (2019) Is eating wild rainbow trout safe? The effects of different land-uses on heavy metals content in Chile. Environ Pollut 254:112995

    CAS  PubMed  Google Scholar 

  65. Bat L, Oztekin A, Yardim O (2018) Metal levels in large sea trout from Sinop fish market. Fresenius Environ Bull 27(12):8505–8508

    CAS  Google Scholar 

  66. Jiang H, Qin D, Mou Z, Zhao J, Tang S, Wu S, Gao L (2016) Trace elements in farmed fish (Cyprinus carpio, Ctenopharyngodon idella and Oncorhynchus mykiss) from Beijing: implication from feed. Food Addit Contam Part B 9(2):132–141

    CAS  Google Scholar 

  67. Sary AA, Velayatzadeh M (2014) Determination of lead and zinc in king mackerel (Scomberomorus guttatus Bloch & Schneider, 1801), Spanish mackerel (Scomberomorus commerson Lacepède, 1800) and tiger-toothed croaker (Otolithes ruber Bloch and Schneider, 1801) from Persian Gulf, Iran in 2001 and 2011. J Biodivers Environ Sci 5(1):322–329

    Google Scholar 

  68. Bibak M, Sattari M, Tahmasebi S, Kafaei R, Sorial GA, Ramavandi B (2020) Trace and major elements concentration in fish and associated sediment–seawater, northern shores of the Persian Gulf. Biol Trace Elem Res :1–13

  69. Hosseini M, Naderi M, Gholami S, Hadipour M (2018) Toxic metals in the muscle and liver of five main commercially-important fishes from the Persian Gulf, Southern Iran. Caspian J Environ Sci 16(2):191–198

    Google Scholar 

  70. Shwafi A (2002) Heavy metals concentration levels in some fish species in the red sea and gulf of Aden-Yemen

  71. Prudente M, Kim E-Y, Tanabe S, Tatsukawa R (1997) Metal levels in some commercial fish species from Manila Bay, the Philippines. Mar Pollut Bull 34(8):671–674

    CAS  Google Scholar 

  72. Gu Y-G, Lin Q, Wang X-H, Du F-Y, Yu Z-L, Huang H-H (2015) Heavy metal concentrations in wild fishes captured from the South China Sea and associated health risks. Mar Pollut Bull 96(1–2):508–512

    CAS  PubMed  Google Scholar 

  73. Sadeghi E, Mohammadi M, Sharafi K, Bohlouli SJBCC (2015) Determination and assessment of three heavy metal content (Cd, Pb and Zn) in Scomberomorous commerson fish caught from the Persian Gulf. 47:220–223

  74. Hosseini M, Naderi M, Gholami S, Hadipour MJCJES (2018) Toxic metals in the muscle and liver of five main commercially-important fishes from the Persian Gulf. Southern Iran 16(2):191–198

    Google Scholar 

  75. Pazira A, fard OK (2016) Comparison of biological accumulation of nickel and cadmium heavy metals in muscle tissue of two species of milk fish Scomberomorus guttatus Scomberomorus commerson in Bushehr Mar Biol Res 6:79–89

  76. Sari AE, Ghasempouri SM, Yaghoupzadeh Y (2001) Measurement Comparison of heavy elements (cadmium, nickel, lead and zinc) in some commercial fish and Penaeus semisulcatus green tiger shrimp in Bushehr region. Ecology 27:15–23

    Google Scholar 

  77. Sary AA, Velayatzadeh MJJoB, Sciences E (2014) Determination of lead and zinc in king mackerel (Scomberomorus guttatus Bloch & Schneider, 1801), Spanish mackerel (Scomberomorus commerson Lacepède, 1800) and Tiger-toothed Croaker (Otolithes ruber Bloch and Schneider, 1801) from Persian Gulf, Iran in 2001 and 2011 5 (1):322–329

  78. Khaled AJC, Ecology (2009) Trace metals in fish of economic interest from the west of Alexandria, Egypt. 25 (4):229–246

  79. Al-Atoom AA, Farah H, El-Badrawy E Some heavy metals levels in tissues of some fish species consumed in Taif region

  80. Prudente M, Kim E-Y, Tanabe S, Tatsukawa RJMPB (1997) Metal levels in some commercial fish species from Manila Bay, the Philippines 34 (8):671–674

  81. Nauen CE (1983) Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fisheries Circular (FAO) no 764

  82. FAO (2017) World Health Organization. WHO Expert Committee on Food Additives. Evaluation of certain food additives: eighty-fourth report of the Joint FAO. World Health Organization,

  83. Tabinda A, Hussain M, Ahmed I, Yasar AJPJZ (2010) Accumulation of toxic and essential trace metals in fish and prawns from Keti Bunder Thatta District. Sindh. 42(5)

  84. Masoud MS, El-Samra MI, El-Sadawy MMJC, Ecology (2007) Heavy-metal distribution and risk assessment of sediment and fish from El-Mex Bay, Alexandria, Egypt. 23 (3):201–216

  85. Nabawi A, Heinzow B, Kruse HJBECT (1987) As, Cd, Cu, Pb, Hg, and Zn in fish from the Alexandria region. Egypt. 39(5)

  86. El-Moselhy KM, Othman A, Abd El-Azem H, El-Metwally MJEjob, sciences a (2014) Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt 1 (2):97–105

  87. Fakhri Y, Djahed B, Toolabi A, Raoofi A, Gholizadeh A, Eslami H, Taghavi M, Mr A, Mousavi Khaneghah A (2020) Potentially toxic elements (PTEs) in fillet tissue of common carp (Cyprinus carpio): a systematic review, meta-analysis and risk assessment study. Toxin Rev:1–13

  88. Okyere H, Voegborlo RB, Agorku SE (2015) Human exposure to mercury, lead and cadmium through consumption of canned mackerel, tuna, pilchard and sardine. Food Chem 179:331–335. https://doi.org/10.1016/j.foodchem.2015.01.038

    Article  CAS  PubMed  Google Scholar 

  89. Lavilla I, Vilas P, Bendicho C (2008) Fast determination of arsenic, selenium, nickel and vanadium in fish and shellfish by electrothermal atomic absorption spectrometry following ultrasound-assisted extraction. Food Chem 106(1):403–409. https://doi.org/10.1016/j.foodchem.2007.05.072

    Article  CAS  Google Scholar 

  90. Leung HM, Leung AOW, Wang HS, Ma KK, Liang Y, Ho KC, Cheung KC, Tohidi F, Yung KKL (2014) Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China. Mar Pollut Bull 78(1):235–245. https://doi.org/10.1016/j.marpolbul.2013.10.028

    Article  CAS  PubMed  Google Scholar 

  91. Parida S, Barik SK, Mohanty B, Muduli PR, Mohanty SK, Samanta S, Pattanaik AK (2017) Trace metal concentrations in euryhaline fish species from Chilika lagoon: human health risk assessment. Int J Environ Sci Technol 14(12):2649–2660. https://doi.org/10.1007/s13762-017-1334-y

    Article  CAS  Google Scholar 

  92. WHO (1989) World Health Organization. Lead: environmental aspects-environmental health criteria 85

  93. Tiimub BM, Afua MADJAijob (2013) Determination of selected heavy metals and iron concentration in two common fish species in Densu River at Weija District in Grater Accra region of Ghana 1 (1):45–55

  94. Biswas S, Prabhu RK, Hussain KJ, Selvanayagam M, Satpathy KK (2012) Heavy metals concentration in edible fishes from coastal region of Kalpakkam, southeastern part of India. Environ Monit Assess 184(8):5097–5104

    CAS  PubMed  Google Scholar 

  95. Pereira L, Ribas J, Vicari T, Silva S, Stival J, Baldan A, Domingos FV, Grassi M, Cestari M, de Assis HSJE, safety e (2016) Effects of ecologically relevant concentrations of cadmium in a freshwater fish 130:29–36

  96. Chen J, Xu Y, Han Q, Yao Y, Xing H, Teng X (2019) Immunosuppression, oxidative stress, and glycometabolism disorder caused by cadmium in common carp (Cyprinus carpio L.): application of transcriptome analysis in risk assessment of environmental contaminant cadmium. J Hazard Mater 366:386–394. https://doi.org/10.1016/j.jhazmat.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  97. Tepanosyan G, Maghakyan N, Sahakyan L, Saghatelyan A (2017) Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicol Environ Saf 142:257–265. https://doi.org/10.1016/j.ecoenv.2017.04.013

    Article  CAS  PubMed  Google Scholar 

  98. Najm M, Shokrzadeh M, Fakhar M, Sharif M, Hosseini SM, RahimiEsboei B, Habibi FJJoMUoMS (2014) Concentration of heavy metals (Cd, Cr and Pb) in the tissues of Clupeonella cultriventris and Gasterosteus aculeatus from Babolsar coastal waters of Mazandaran Province, Caspian Sea 24 (113):185–192

  99. Gholizadeh A, Salmani MH, Ebrahimi AA, Hosseini SS, Ehrampoush MH, Miri M, Nikoonahad A, Pasalari H (2018) Improved power density and Cr/Pb removal using ozone in a microbial desalination cell. Environ Chem Lett 16(4):1477–1485. https://doi.org/10.1007/s10311-018-0760-5

    Article  CAS  Google Scholar 

  100. Organization WH (1989) Heavy metals environmental aspects. Environ Health Criteria 85

  101. Velma V, Vutukuru SS, Tchounwou PB (2009) Ecotoxicology of hexavalent chromium in freshwater fish: a critical review. Rev Environ Health 24(2):129–145. https://doi.org/10.1515/reveh.2009.24.2.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shah N, Khisroon M, Shah SSA (2020) Assessment of copper, chromium, and lead toxicity in fish (Ctenopharyngodon idella Valenciennes, 1844) through hematological biomarkers. Environ Sci Pollut Res 27:33259–33269. https://doi.org/10.1007/s11356-020-09598-z

    Article  CAS  Google Scholar 

  103. Lescord GL, Johnston TA, Heerschap MJ, Keller W, Southee FM, O’Connor CM, Dyer RD, Branfireun BA, Gunn JM (2020) Arsenic, chromium, and other elements of concern in fish from remote boreal lakes and rivers: drivers of variation and implications for subsistence consumption. Environ Pollut 259:113878. https://doi.org/10.1016/j.envpol.2019.113878

    Article  CAS  PubMed  Google Scholar 

  104. Alimentarius C (2015) General standard for contaminants and toxins in food and feed (codex stan 193-1995)

  105. Yi Y-J, Zhang S-HJES, Research P (2012) Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River 19 (9):3989–3996

  106. Agah H, Leermakers M, Elskens M, Fatemi SMR, Baeyens W (2008) Accumulation of trace metals in the muscle and liver tissues of five fish species from the Persian Gulf. Environ Monit Assess 157(1):499–514. https://doi.org/10.1007/s10661-008-0551-8

    Article  CAS  PubMed  Google Scholar 

  107. Olmedo P, Hernández AF, Pla A, Femia P, Navas-Acien A, Gil F (2013) Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Risk and nutritional assessment and mercury–selenium balance. Food Chem Toxicol 62:299–307. https://doi.org/10.1016/j.fct.2013.08.076

    Article  CAS  PubMed  Google Scholar 

  108. Goldhaber SB (2003) Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 38(2):232–242. https://doi.org/10.1016/S0273-2300(02)00020-X

    Article  CAS  PubMed  Google Scholar 

  109. Perl DP, Olanow CWJJoN, Neurology E (2007) The neuropathology of manganese-induced Parkinsonism. 66 (8):675–682

  110. Liu M, Xu Y, Nawab J, Rahman Z, Khan S, Idress M, Ud din Z, Ali A, Ahmad R, Khan SA, Khan A, Khan MQ, Tang Y-T, Li G (2020) Contamination features, geo-accumulation, enrichments and human health risks of toxic heavy metal(loids) from fish consumption collected along Swat river, Pakistan. Environ Technol Innov 17:100554. https://doi.org/10.1016/j.eti.2019.100554

  111. Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159(10):2575–2585. https://doi.org/10.1016/j.envpol.2011.06.011

    Article  CAS  PubMed  Google Scholar 

  112. Bervoets L, Blust R, Verheyen R (2001) Accumulation of metals in the tissues of three spined stickelback (Gasterosteus aculeatus) from natural fresh waters. Ecotoxicol Environ Saf 48(2):117–127. https://doi.org/10.1006/eesa.2000.2010

    Article  CAS  PubMed  Google Scholar 

  113. Tuzen M (2009) Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey. Food Chem Toxicol 47(8):1785–1790. https://doi.org/10.1016/j.fct.2009.04.029

    Article  CAS  PubMed  Google Scholar 

  114. Australia New Zealand Food Authority (1998) Food Standards Code. Standard A12 issue 37

  115. Shah AQ, Kazi TG, Arain MB, Jamali MK, Afridi HI, Jalbani N, Baig JA, Kandhro GA (2009) Accumulation of arsenic in different fresh water fish species – potential contribution to high arsenic intakes. Food Chem 112(2):520–524. https://doi.org/10.1016/j.foodchem.2008.05.095

    Article  CAS  Google Scholar 

  116. Cui D, Zhang P, Li H, Zhang Z, Luo W, Yang Z (2020) Biotransformation of dietary inorganic arsenic in a freshwater fish Carassius auratus and the unique association between arsenic dimethylation and oxidative damage. J Hazard Mater 391:122153. https://doi.org/10.1016/j.jhazmat.2020.122153

    Article  CAS  PubMed  Google Scholar 

  117. Salehi H, Ebrahimi AA, Ehrampoush MH, Salmani MH, Fard RF, Jalili M, Gholizadeh A (2020) Integration of photo-oxidation based on UV/Persulfate and adsorption processes for arsenic removal from aqueous solutions. Groundw Sustain Dev 10:100338. https://doi.org/10.1016/j.gsd.2020.100338

    Article  Google Scholar 

  118. Pilehvarian AA, Malekirad AA, Bolandnazar N-S, Rezaei M (2015) Heavy metal bioaccumulation in different fish species in the coast of the Persian Gulf, Iran. Toxin Rev 34(4):215–219

    CAS  Google Scholar 

  119. Jinadasa BKKK, Fowler SW (2019) Critical review of mercury contamination in Sri Lankan fish and aquatic products. Mar Pollut Bull 149:110526. https://doi.org/10.1016/j.marpolbul.2019.110526

    Article  CAS  PubMed  Google Scholar 

  120. Radomyski A, Lei K, Giubilato E, Critto A, Lin C, Marcomini AJMpb (2018) Bioaccumulation of trace metals in aquatic food web. A case study, Liaodong Bay, NE China 137:555–565

  121. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone NJEs, technology (2013) Mercury as a global pollutant: sources, pathways, and effects. 47 (10):4967–4983

  122. EPA (2012) Quantitative Risk Assessment Calculations. Sustainable Futures / P2 Framework Manual 2012 EPA-748-B12–001 13. Quantitative Risk Assessment Calculations 13.:1–11

  123. Gholami Z, Abtahi M, Golbini M, Parseh I, Alinejad A, Avazpour M, Moradi S, Fakhri Y, Mousavi Khaneghah A (2019) The concentration and probabilistic health risk assessment of nitrate in Iranian drinking water: a case study of Ilam city. Toxin Rev:1–10

  124. Pirsaheb M, Fakhri Y, Karami M, Akbarzadeh R, Safaei Z, Fatahi N, Sillanpää M, Asadi A (2019) Measurement of permethrin, deltamethrin and malathion pesticide residues in the wheat flour and breads and probabilistic health risk assessment: a case study in Kermanshah, Iran. International Journal of Environmental Analytical Chemistry:1–12

  125. Rezaei H, Jafari A, Kamarehie B, Fakhri Y, Ghaderpoury A, Karami MA, Ghaderpoori M, Shams M, Bidarpoor F, Salimi M (2019) Health-risk assessment related to the fluoride, nitrate, and nitrite in the drinking water in the Sanandaj, Kurdistan County, Iran. Hum Ecol Risk Assess 25(5):1242–1250

    CAS  Google Scholar 

  126. Atamaleki A, Yazdanbakhsh A, Fakhri Y, Mahdipour F, Khodakarim S, Mousavi Khaneghah A (2019) The concentration of potentially toxic elements (PTEs) in the onion and tomato irrigated by wastewater: a systematic review; meta-analysis and health risk assessment. Food Res Int 125:108518. https://doi.org/10.1016/j.foodres.2019.108518

    Article  CAS  PubMed  Google Scholar 

  127. Fakhri Y, Rahmani J, Oliveira CAF, Franco LT, Corassin CH, Saba S, Rafique J, Khaneghah AM (2019) Aflatoxin M1 in human breast milk: a global systematic review, meta-analysis, and risk assessment study (Monte Carlo simulation). Trends Food Sci Technol 88:333–342. https://doi.org/10.1016/j.tifs.2019.03.013

    Article  CAS  Google Scholar 

  128. Fakhri Y, Saha N, Miri A, Baghaei, Mehdi, Roomiani L, Ghaderpoori M, Taghavi M, Keramati H, Bahmani Z (2018) Metal concentrations in fillet and gill of parrotfish (Scarus ghobban) from the Persian Gulf and implications for human health. Food Chem Toxicol 115(2018):348–354

    Google Scholar 

  129. Rahmani J, Fakhri Y, Shahsavani A, Bahmani Z, Urbina MA, Chirumbolo S, Keramati H, Moradi B, Bay A, Bjørklund G (2018) A systematic review and meta-analysis of metal concentrations in canned tuna fish in Iran and human health risk assessment. Food Chem Toxicol 118(2018):753–765

    CAS  PubMed  Google Scholar 

  130. Razzaghi N, Ziarati P, Rastegar H, Shoeibi S, Amirahmadi M, Conti GO, Ferrante M, Fakhri Y, Khaneghah AM (2018) The concentration and probabilistic health risk assessment of pesticide residues in commercially available olive oils in Iran. Food Chem Toxicol 120:32–40

    CAS  PubMed  Google Scholar 

  131. Fakhri Y, Sahab N, Ghanbari, Sahebe, Rasouli M, Miri A, Avazpour, Moayed, Rahimizadeh A, Riahih S-M, Ghaderpoori M, Keramati H, Moradi B, Amanidaz N (2018) Carcinogenic and non-carcinogenic health risks of metal (oid) s in tap water from Ilam city, Iran. Food Chem Toxicol 118(2018):204–211

    CAS  PubMed  Google Scholar 

  132. Heshmati A, Ghadimi S, Mousavi Khaneghah A, Barba FJ, Lorenzo JM, Nazemi F, Fakhri Y (2018) Risk assessment of benzene in food samples of Iran's market. Food Chem Toxicol 114(2018):278–284

    CAS  PubMed  Google Scholar 

  133. Rahmani J, Alipour S, Miri A, Fakhri Y, Seyed-Mohammad R, Hassan K, Moradi M, Nazak A, Rokhsane HP, Zohreh B (2018) The prevalence of aflatoxin M1 in milk of Middle East region: A systematic review, meta-analysis and probabilistic health risk assessment. Food Chem Toxicol 118(2018):653–666

    CAS  PubMed  Google Scholar 

  134. Yousefi M, Shemshadi G, Khorshidian N, Ghasemzadeh-Mohammadi V, Fakhri Y, Hosseini H (2018) Mousavi Khaneghah A (2018) Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: a risk assessment study. Food Chem Toxicol 118:480–489

    CAS  PubMed  Google Scholar 

  135. Fakhri Y, Mohseni-Bandpei A, Oliveri Conti G, Keramati H, Zandsalimi Y, Amanidaz N, Hosseini Pouya R, Moradi B, Bahmani Z, Rasouli Amirhajeloo L (2017) Health risk assessment induced by chloroform content of the drinking water in Iran: systematic review. Toxin Rev 36(4):322–330

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadolah Fakhri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thai, V.N., Dehbandi, R., Fakhri, Y. et al. Potentially Toxic Elements (PTEs) in the Fillet of Narrow-Barred Spanish Mackerel (Scomberomorus commerson): a Global Systematic Review, Meta-analysis and Risk Assessment. Biol Trace Elem Res 199, 3497–3509 (2021). https://doi.org/10.1007/s12011-020-02476-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02476-2

Keywords

Navigation