Skip to main content
Log in

Selenium Regulation of the Immune Function of Dendritic Cells in Mice Through the ERK, Akt and RhoA/ROCK Pathways

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium levels can regulate the function of T cells, macrophages, B cells, natural killer cells and other immune cells. However, the effect of selenium on the immune function of dendritic cells (DCs) isolated from selenium-supplemented mice is unknown. In this study, C57BL/6J mice were randomly divided into three groups and fed diets containing low (0.08 ppm), medium (0.25 ppm) or high (1 ppm) selenium levels for 8 weeks. Immature (imDCs) and mature (mDCs) dendritic cells were then isolated from the bone marrow. Next, the migration, phagocytic capacity and mixed lymphocyte reaction (MLR) for imDCs and mDCs were detected by transwell and flow cytometry. The levels of C-C chemokine receptor type 7 (CCR7), major histocompatibility complex II (MHCII) and reactive oxygen species (ROS) were assayed by flow cytometry. F-actin and superoxide dismutase (SOD) activity was detected by fluorescence microscopy and SOD assay kit, respectively. In addition, the extracellular signal-regulated kinase (ERK), Akt, Ras homolog gene family member A/Rho-associated protein kinase (RhoA/ROCK) signalling, selenoprotein K (SELENOK) and glutathione peroxidase 1 (GPX1) levels were measured by western blot analysis. The results indicated that selenium deficiency enhanced the migration of imDCs by ROS and SELENOK-mediated ERK, Akt and RhoA/ROCK pathways but impaired the antigen uptake of imDCs. Although a high selenium level inhibited the migration of imDCs, it had no effect on phagocytic capacity. For mDCs, low selenium levels impaired free migration, and high levels inhibited the chemotactic migration involved in F-actin and CCR7, respectively. Low and high selenium levels impaired the MLR by inhibiting MHCII surface localisation, which might be related to ROS- and SELENOK-mediated ERK, Akt and RhoA/ROCK signalling pathways. In summary, selenium may regulate the immune function of mouse DCs through the ROS- and SELENOK-mediated ERK, Akt and RhoA/ROCK signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AO:

Average optical

CCR7:

C-C chemokine receptor type 7

DCs:

Dendritic cells

ERK:

Extracellular signal-regulated kinase

GPX1:

Glutathione peroxidase 1

GSH:

Glutathione

IL:

Interleukin

imDCs:

Immature dendritic cells

LPS:

Lipopolysaccharides

MAPK:

Mitogen-activated protein kinases

mDCs:

Mature dendritic cells

MHCII:

Major histocompatibility complex II

MLR:

Mixed lymphocyte reaction

MoDCs:

Monocyte-derived DCs

PBS:

Phosphate-buffered saline

RhoA:

Ras homolog gene family member A

ROCK:

Rho-associated protein kinases

ROS:

Reactive oxygen species

rmGM-CSF:

Recombinant mouse granulocyte-macrophage CSF

rmIL-4:

Recombinant mouse interleukin-4

SELENOK:

Selenoprotein K

SOD:

Superoxide dismutase

References

  1. Eisenbarth SC (2019) Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol 19(2):89–103

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Collin M, Bigley V (2018) Human dendritic cell subsets: an update. Immunology 154(1):3–20

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Segura E, Amigorena S (2015) Cross-presentation in mouse and human dendritic cells. Adv Immunol. Academic Press 127:1–31

    CAS  PubMed  Google Scholar 

  4. Perez CR, De Palma M (2019) Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun 10(1):1–10

    CAS  Google Scholar 

  5. Bryant CE, Sutherland S, Kong B, Papadimitrious MS, Hart DNJ, Fromm PD (2019) Dendritic cells as cancer therapeutics. Semin Cell Dev Biol 86:77–88

    CAS  PubMed  Google Scholar 

  6. Rayman MP (2012) Selenium and human health. Lancet 79(9822):1256–1268

    Google Scholar 

  7. Avery JC, Hoffmann PR (2018) Selenium, selenoproteins, and immunity. Nutrients 10(9):E1203

    PubMed  Google Scholar 

  8. Huang Z, Rose AH, Hoffmann PR (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16(7):705–743

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hawkes WC, Kelley DS, Taylor PC (2001) The effects of dietary selenium on the immune system in healthy men. Biol Trace Elem Res 81:189–213

    CAS  PubMed  Google Scholar 

  10. Sun Z, Liu C, Pan T, Yao H, Li S (2017) Selenium accelerates chicken dendritic cells differentiation and affects selenoproteins expression. Dev Comp Immunol 77:30–37

    CAS  PubMed  Google Scholar 

  11. Sun Z, Xu Z, Wang D, Yao H, Li S (2018) Selenium deficiency inhibits dendritic cells differentiation and immune function, imbalance the Th1/Th2 of dendritic cells. Metallomics 10(5):759–767

    CAS  PubMed  Google Scholar 

  12. Gostner JM, Becker K, Fuchs D, Sucher R (2013) Redox regulation of the immune response. Redox Rep 18(3):88–94

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Götz A, Ty MC, Rodriguez A (2019) Oxidative stress enhances dendritic cell responses to plasmodium falciparum. Immunohorizons 3(11):511–518

    PubMed  Google Scholar 

  14. Kroening PR, Barnes TW, Pease L, Limper A, Kita H, Vassallo R (2008) Cigarette smoke-induced oxidative stress suppresses generation of dendritic cell IL-12 and IL-23 through ERK-dependent pathways. J Immunol 181(2):1536–1547

    CAS  PubMed  Google Scholar 

  15. Zaccagnino P, Saltarella M, Maiorano S, Gaballo A, Santoro G, Nico B, Lorusso M, Del Prete A (2012) An active mitochondrial biogenesis occurs during dendritic cell differentiation. Int J Biochem Cell Biol 44(11):1962–1969

    CAS  PubMed  Google Scholar 

  16. Kantengwa S, Jornot L, Devenoges C, Nicod LP (2003) Superoxide anions induce the maturation of human dendritic cells. Am J Respir Crit Care Med 167(3):431–437

    PubMed  Google Scholar 

  17. Matsue H, Edelbaum D, Shalhevet D, Mizumoto N, Yang C, Mummert ME, Oeda J, Masayasu H, Takashima A (2003) Generation and function of reactive oxygen species in dendritic cells during antigen presentation. J Immunol 171(6):3010–3018

    CAS  PubMed  Google Scholar 

  18. Kamide Y, Utsugi M, Dobashi K, Ono A, Ishizuka T, Hisada T, Koga Y, Uno K, Hamuro J, Mori M (2011) Intracellular glutathione redox status in human dendritic cells regulates IL-27 production and T-cell polarization. Allergy 66(9):1183–1192

    CAS  PubMed  Google Scholar 

  19. Zhang Y, Liu Q, Yin H, Min Y, Li S (2020) Selenium deficiency causes immune damage by activating the DUSP1/NF-κB pathway and endoplasmic reticulum stress in chicken spleen. Food Funct 11:6467–6475

    CAS  Google Scholar 

  20. Nakahara T, Moroi Y, Uchi H, Furue M (2006) Differential role of MAPK signaling in human dendritic cell maturation and Th1/Th2 engagement. J Dermatol Sci 42(1):1–11

    CAS  PubMed  Google Scholar 

  21. Kim JH, Kang TH, Noh KH, Kim SH, Lee YH, Kim KW, Bae HC, Ahn YH, Choi EY, Kim JS et al (2010) Enhancement of DC vaccine potency by activating the PI3K/AKT pathway with a small interfering RNA targeting PTEN. Immunol Lett 134(1):47–54

    CAS  PubMed  Google Scholar 

  22. Bros M, Haas K, Moll L, Grabbe S (2019) RhoA as a key regulator of innate and adaptive immunity. Cells 8(7):733

    CAS  PubMed Central  Google Scholar 

  23. Marciel MP, Hoffmann PR (2019) Molecular mechanisms by which selenoprotein K regulates immunity and cancer. Biol Trace Elem Res 192(7):60–68

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Verma S, Hoffmann FKW, Kumar M, Huang Z, Roe K, Nguyen-Wu E, Hashimoto AS, Hoffmann PR (2011) Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J Immunol 186(4):2127–2137

    CAS  PubMed  Google Scholar 

  25. Zhang M, Tang H, Guo Z, An H, Zhu X, Song W, Guo J, Huang X, Chen T, Wang J, Cao X (2004) Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol 5(11):1124–1133

    CAS  PubMed  Google Scholar 

  26. Zeng Z, Yao W, Xu X, Xu G, Long J, Wang X, Wen Z, Chien S (2009) Hepatocellular carcinoma cells deteriorate the biophysical properties of dendritic cells. Cell Biochem Biophys 55(1):33–43

    CAS  PubMed  Google Scholar 

  27. Jia Y, Zhou J, Liu H, Huang K (2014) Effect of methionine sulfoxide reductase B1 (SelR) gene silencing on peroxynitrite-induced F-actin disruption in human lens epithelial cells. Biochem Biophys Res Commun 443(3):876–881

    CAS  PubMed  Google Scholar 

  28. Jia Y, Li Y, Du S, Huang K (2012) Involvement of MsrB1 in the regulation of redox balance and inhibition of peroxynitrite-induced apoptosis in human lens epithelial cells. Exp Eye Res 100:7–16

    CAS  PubMed  Google Scholar 

  29. Hoffmann FW, Hashimoto AC, Shafer LA, Dow S, Berry MJ, Hoffmann PR (2010) Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols. J Nutr 140(6):1155–1161

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Matos TJ, Duarte CB, Gonçalo M, Lopes MC (2005) Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell line. Immunol Cell Biol 83(6):607–614

    CAS  PubMed  Google Scholar 

  31. Mizuashi M, Ohtani T, Nakagawa S, Aiba S (2005) Redox imbalance induced by contact sensitizers triggers the maturation of dendritic cells. J Invest Dermatol 124(3):579–586

    CAS  PubMed  Google Scholar 

  32. Pearce G, Audzevich T, Jessberger R (2011) SYK regulates B-cell migration by phosphorylation of the F-actin interacting protein SWAP-70. Blood 117(5):1574–1584

    CAS  PubMed  Google Scholar 

  33. Tak H, Jang E, Kim SB, Park J, Suk J, Yoon YS, Ahn JK, Lee JH, Joe CO (2007) 14-3-3epsilon inhibits MK5-mediated cell migration by disrupting F-actin polymerization. Cell Signal 19(11):2379–2387

    CAS  PubMed  Google Scholar 

  34. Wang LH, Xiang J, Yan M, Zhang Y, Zhao Y, Yue CF, Xu J, Zheng FM, Chen JN, Kang Z, Chen TS, Xing D, Liu Q (2010) The mitotic kinase Aurora-A induces mammary cell migration and breast cancer metastasis by activating the Cofilin-F-actin pathway. Cancer Res 70(22):9118–9128

    CAS  PubMed  Google Scholar 

  35. Schachtner H, Weimershaus M, Stache V, Plewa N, Legler DF, Höpken UE, Maritzen T (2015) Loss of Gadkin affects dendritic cell migration in vitro. PLoS One 10(12):e0143883

    PubMed  PubMed Central  Google Scholar 

  36. Zeng Z, Liu X, Jiang Y, Wang G, Zhan J, Guo J, Yao W, Sun D, Ka W, Tang Y, Tang J, Wen Z, Chien S (2006) Biophysical studies on the differentiation of human CD14+ monocytes into dendritic cells. Cell Biochem Biophys 45(1):19–30

    PubMed  Google Scholar 

  37. Ocana-Morgner C, Wahren C, Jessberger R (2009) SWAP-70 regulates RhoA/RhoB-dependent MHCII surface localization in dendritic cells. Blood 113(7):1474–1482

    CAS  PubMed  Google Scholar 

  38. Seul HJ, Ahn YR, Song HM, Ha YJ, Lee JR (2012) Over-expression of a RhoA-specific guanine nucleotide exchange factor, p190RhoGEF, in mouse dendritic cells negatively regulates cellular responses to bacterial lipopolysaccharide. Mol Cell 34(2):159–164

    CAS  Google Scholar 

  39. Puig-Kröger A, Relloso M, Fernández-Capetillo O, Zubiaga A, Silva A, Bernabéu C, Corbí AL (2001) Extracellular signal-regulated protein kinase signaling pathway negatively regulates the phenotypic and functional maturation of monocyte-derived human dendritic cells. Blood 98(7):2175–2182

    PubMed  Google Scholar 

  40. Nakagawa S, Ohtani T, Mizuashi M, Mollah ZU, Ito Y, Tagami H, Aiba S (2004) p38 mitogen-activated protein kinase mediates dual role of ultraviolet B radiation in induction of maturation and apoptosis of monocyte-derived dendritic cells. J Invest Dermatol 123(2):361–370

    CAS  PubMed  Google Scholar 

  41. Aiba S, Manome H, Nakagawa S, Mollah ZU, Mizuashi M, Ohtani T, Yoshino Y, Tagami H (2003) p38 mitogen-activated protein kinase and extracellular signal-regulated kinases play distinct roles in the activation of dendritic cells by two representative haptens, NiCl2 and 2,4-dinitrochlorobenzene. J Invest Dermatol 120(3):390–399

    CAS  PubMed  Google Scholar 

  42. Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C, Rapp UR, Rudel T (2005) Prohibitin is required for Ras-induced Raf–MEK–ERK activation and epithelial cell migration. Nat Cell Biol 7(8):837–843

    CAS  PubMed  Google Scholar 

  43. Bąbolewska E, Pietrzak A, Brzezińska-Błaszczyk E (2014) Cathelicidin rCRAMP stimulates rat mast cells to generate cysteinyl leukotrienes, synthesize TNF and migrate: involvement of PLC/A2, PI3K and MAPK signaling pathways. Int Immunol 26(11):637–646

    PubMed  Google Scholar 

  44. Katagiri A, Nakayama K, Rahman MT, Rahman M, Yeasmin S, Ishikawa M, Iida K, Nakayama N, Miyazaki K (2010) MEK inhibition suppresses cell invasion and migration in ovarian cancers with activation of ERK1/2. Exp Ther Med 1(4):591–596

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Liao YC, Shih YW, Chao CH, Lee XY, Chiang TA (2009) Involvement of the ERK signaling pathway in fisetin reduces invasion and migration in the human lung cancer cell line A549. J Agric Food Chem 57(19):8933–8941

    CAS  PubMed  Google Scholar 

  46. Filippi I, Morena E, Aldinucci C, Carraro F, Sozzani S, Naldini A (2014) Short-term hypoxia enhances the migratory capability of dendritic cell through HIF-1α and PI3K/Akt pathway. J Cell Physiol 229(12):2067–2076

    CAS  PubMed  Google Scholar 

  47. Bhattacharyya S, Sen P, Wallet M, Long B, Baldwin AS Jr, Tisch R (2004) Immunoregulation of dendritic cells by IL-10 is mediated through suppression of the PI3K/Akt pathway and of IkappaB kinase activity. Blood 104(4):1100–1109

    CAS  PubMed  Google Scholar 

  48. Meng XL, Chen CL, Liu YY, Su SJ, Gou JM, Huan FN, Wang D, Liu HS, Ben SB, Lu J (2019) Selenoprotein SELENOK enhances the migration and phagocytosis of microglial cells by increasing the cytosolic free Ca2+ level resulted from the up-regulation of IP3R. Neuroscience 406:38–49

    CAS  PubMed  Google Scholar 

  49. Li M, Cheng W, Nie T, Lai H, Hu X, Luo J, Li F, Li H (2018) Selenoprotein K mediates the proliferation, migration, and invasion of human choriocarcinoma cells by negatively regulating human chorionic gonadotropin expression via ERK, p38 MAPK, and Akt signaling pathway. Biol Trace Elem Res 184(1):47–59

    CAS  PubMed  Google Scholar 

  50. Ben SB, Peng B, Wang GC, Li C, Gu HF, Jiang H, Meng XL, Lee BJ, Chen CL (2015) Overexpression of selenoprotein SelK in BGC-823 cells inhibits cell adhesion and migration. Biochemistry (Mosc) 80(10):1344–1353

    CAS  Google Scholar 

  51. Norton RL, Fredericks GJ, Huang Z, Fay JD, Hoffmann FW, Hoffmann PR (2017) Selenoprotein K regulation of palmitoylation and calpain cleavage of ASAP2 is required for efficient FcγR-mediated phagocytosis. J Leukoc Biol 101(2):439–448

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (No. 21561006 and No. 21867007), Guizhou Provincial Natural Science Foundation (No. [2019]1258 and No. LH[2016]7372) and Opening fund of Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica (No. BCMM202002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Jia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Liangliang Zhang and Huan Xia contributed to the work equally and should be regarded as co-first authors

Electronic Supplementary Material

ESM 1

(DOCX 22 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xia, H., Xia, K. et al. Selenium Regulation of the Immune Function of Dendritic Cells in Mice Through the ERK, Akt and RhoA/ROCK Pathways. Biol Trace Elem Res 199, 3360–3370 (2021). https://doi.org/10.1007/s12011-020-02449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02449-5

Keywords

Navigation