Skip to main content
Log in

Effects of Selenium on MAC-T Cells in Bovine Mastitis: Transcriptome Analysis of Exosomal mRNA Interactions

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium, a micronutrient, is indispensable for maintaining normal metabolic functions in animals and plants. Selenium has shown promise in terms of its effect on the immune function, ability to control inflammation, and ability to improve bovine mammary gland health. Bovine mastitis remains a major threat to dairy herds globally and has economically significant impacts. The exosomes are a new mode of intercellular communication. Exosomal transfer of mRNAs, microRNAs, and proteins between cells affects the protein production of recipient cells. The development of novel high-throughput omics approaches and bioinformatics tools will help us understand the effects of selenium on immunobiology. However, the differential expression of mRNAs in bovine mammary epithelial cell–derived exosomes has rarely been studied. In the present study, differences in the exosomal transcriptome between control and selenium-treated MAC-T cells were identified by RNA sequencing and transcriptome analysis. The results of mRNA profiling revealed 1978 genes in exosomes that were differentially expressed between the selenium-treated and control cells. We selected and analyzed 91 genes that are involved in inflammation, redox reactions, and immune cell function related to mastitis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed enrichment pathways involved in selenoproteins and the Ras/PI3K/AKT, MAPK, and FOXO signaling pathways. Our results revealed that selenium may play a crucial role in immune and inflammatory regulation by influencing the differential expression of exosomal mRNAs of key genes in bovine mastitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DEGs:

differential expression genes

FOXO:

forkhead box O

GO:

gene Ontology

GPx:

glutathione peroxidases

IL:

interleukin

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MAPK:

mitogen-activated protein kinase

NF-κB:

nuclear transcription factor-kappa B

NTA:

nanoparticle tracking analysis

PI3K:

phosphoinositide 3-kinases

ROS:

reactive oxygen species

SELENOK:

selenoprotein K

SELP:

selenoprotein P

TEM:

transmission electron microscopy

TrxR:

thioredoxin reductases

TXN:

thioredoxin

TXNIP:

thioredoxin-interacting protein

TXNRDs:

thioredoxin reductases

References

  1. Mehdi Y, Hornick JL, Istasse L, Dufrasne I (2013) Selenium in the environment, metabolism and involvement in body functions. Molecules 18:3292–3311

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeng H (2009) Selenium as an essential micronutrient: roles in cell cycle and apoptosis. Molecules 14:1263–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Avery J, Hoffmann P (2018) Selenium, Selenoproteins, and immunity. Nutrients 10:1203

  4. Wang N, Tan H, Li S, Xu Y, Guo W, Feng Y (2017) Supplementation of micronutrient selenium in metabolic diseases: its role as an antioxidant. Oxidative Med Cell Longev 2017:7478523

    Google Scholar 

  5. Catherine M (2015) Selenium and chronic diseases: a nutritional genomics perspective. Nutrients 7:3621–3651

    Google Scholar 

  6. Daniels LA (1996) Selenium metabolism and bioavailability. Biol Trace Elem Res 54:185–199

    CAS  PubMed  Google Scholar 

  7. Rayman MP (2018) The importance of selenium to human health. Lancet 2000:233–241

    Google Scholar 

  8. Chen X, Yang G, Chen J, Chen X, Ge K (1980) Studies on the relations of selenium and Keshan disease. Biol Trace Elem Res 2:91–107

    CAS  PubMed  Google Scholar 

  9. N. Council, C. National (2001) Nutrient requirements of dairy cattle: seventh revised edition. National Research Council, Washington, DC, 2001

  10. Suttle NF (2009) Mineral nutrition of livestock. Cabi Bookshop, 215(6):1–8

  11. Henriques M, Gomes F (2016) Control of bovine mastitis: old and recent therapeutic approaches. Curr Microbiol 72(4):377–382

  12. Motaung TE, Petrovski KR, Petzer IM, Thekisoe O, Tsilo TJ (2017) Importance of bovine mastitis in Africa. Anim Health Res Rev 18:1

    Google Scholar 

  13. Cantón R, Morosini M (2011) Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev 35:977–991

    PubMed  Google Scholar 

  14. Bradley A (2002) Bovine mastitis: an evolving disease. Vet J 164:116–128

    CAS  PubMed  Google Scholar 

  15. Boyne R, Arthur J (1979) Alterations of neutrophil function in selenium-deficient cattle. J Comp Pathol 89:151–158

    CAS  PubMed  Google Scholar 

  16. Roy M, Kiremidjian-Schumacher L, Wishe H, Cohen M, Stotzky G (1994) Supplementation with selenium and human immune cell functions. I. Effect on lymphocyte proliferation and interleukin 2 receptor expression. Biol Trace Elem Res 41:103–114

    CAS  PubMed  Google Scholar 

  17. Liu K, Ding T, Fang L, Cui L, Li J, Meng X, Zhu G, Qian C, Wang H, Li J (2020) Staphylococcus aureus organic selenium ameliorates -induced mastitis in rats by inhibiting the activation of NF-κB and MAPK signaling pathways. Front Vet Sci 7:443

    PubMed  PubMed Central  Google Scholar 

  18. Wang H, Bi C, Wang Y, Sun J, Meng X, Li J (2018) Selenium ameliorates Staphylococcus aureus-induced inflammation in bovine mammary epithelial cells by inhibiting activation of TLR2, NF-κB and MAPK signaling pathways. BMC Vet Res 14:197

    PubMed  PubMed Central  Google Scholar 

  19. Console L, Scalise M, Indiveri C (2019) Exosomes in inflammation and role as biomarkers. Clin Chim Acta 488:165–171

    CAS  PubMed  Google Scholar 

  20. Colombo M, Raposo GA, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    CAS  PubMed  Google Scholar 

  21. Tan SS, Yin Y, Lee T, Lai RC, Yeo RWY, Zhang B, Choo A, Lim SK (2013) Therapeutic MSC exosomes are derived from lipid raft microdomains in the plasma membrane. J Extracell Vesicles 2:1–10

    Google Scholar 

  22. Kato T, Miyaki S, Ishitobi H, Nakamura Y, Nakasa T, Lotz MK, Ochi M (2014) Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res Ther 16:R163

    PubMed  PubMed Central  Google Scholar 

  23. Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL (2009) Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol 183:3720–3730

    CAS  PubMed  Google Scholar 

  24. Gupta A, Pulliam L (2014) Exosomes as mediators of neuroinflammation. J Neuroinflammation 11:68

    PubMed  PubMed Central  Google Scholar 

  25. Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo J, Ofrecio J, Wollam J, Hernandez-Carretero A, Fu W, Li P, Olefsky J (2017) Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171:372–384.e312

    CAS  PubMed  Google Scholar 

  26. Lässer C, Eldh M, Lötvall J (2012) Isolation and characterization of RNA-containing exosomes. J Vis Exp:e3037. https://doi.org/10.3791/3037

  27. Wang X, Xu C, Hua Y, Sun L, Cheng K, Jia Z, Han Y, Dong J, Cui Y, Yang Z (2016) Exosomes play an important role in the process of psoralen reverse multidrug resistance of breast cancer. J Exp Clin Cancer Res 35:186

    PubMed  PubMed Central  Google Scholar 

  28. Hatfield DL, Berry MJ, Gladyshev VN (2002) Selenium: Its molecular biology and role in human health. Free Radic Res 36:2:235. https://doi.org/10.1080/10715760290006394

  29. Sordillo LM (2013) Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Med-Vet International 2013:154045

    Google Scholar 

  30. Burk RF, Hill KE (2009) Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta 1790:1441–1447

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303

    PubMed  Google Scholar 

  32. Yang J, Hamid S, Liu Q, Cai J, Xu S, Zhang Z (2017) Gene expression of selenoproteins can be regulated by thioredoxin(Txn) silence in chicken cardiomyocytes. J Inorg Biochem 177:118–126

    CAS  PubMed  Google Scholar 

  33. Wen Y, Liu Y, Tang T, Pan M, Xu S, Ma K, Lv L, Liu H, Liu B (2018) mROS-TXNIP axis activates NLRP3 inflammasome to mediate renal injury during ischemic AKI. Int J Biochem Cell Biol 98:43–53

    CAS  PubMed  Google Scholar 

  34. Ganther HE, Baumann CA (1962) Selenium metabolism. J Nutr 77:210–216

    CAS  PubMed  Google Scholar 

  35. Liu J, Srinivasan P, Pham DN, Rozovsky S (2012) Expression and purification of the membrane enzyme selenoprotein K. Protein Expr Purif 86:27–34

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao X, Xing H, Li S, Li J, Ying T, Xu S (2012) Selenium regulates gene expression of selenoprotein W in chicken gastrointestinal tract. Biol Trace Elem Res 145:181–188

    CAS  PubMed  Google Scholar 

  37. Kipp A, Banning A, van Schothorst E, Méplan C, Schomburg L, Evelo C, Coort S, Gaj S, Keijer J, Hesketh J, Brigelius-Flohé R (2009) Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to limited selenium intake in mouse colon. Mol Nutr Food Res 53:1561–1572

    CAS  PubMed  Google Scholar 

  38. West A (2017) Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology 391:54–63

    CAS  PubMed  Google Scholar 

  39. Wang S, Li X, Wang W, Zhang H, Xu S (2019) Application of transcriptome analysis: oxidative stress, inflammation and microtubule activity disorder caused by ammonia exposure may be the primary factors of intestinal microvilli deficiency in chicken. Sci Total Environ 696:134035.134031–134035.134010

    Google Scholar 

  40. Johnson D, Chen Y (2012) Ras family of small GTPases in immunity and inflammation. Curr Opin Pharmacol 12:458–463

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Aksamitiene E, Kiyatkin A, Kholodenko B (2012) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 40:139–146

    CAS  PubMed  Google Scholar 

  42. Jiang A, Zhang Y, Zhang X, Wu D, Liu Z, Li S, Liu X, Han Z, Wang C, Wang J, Wei Z, Guo C, Yang Z (2020) Morin alleviates LPS-induced mastitis by inhibiting the PI3K/AKT, MAPK, NF-κB and NLRP3 signaling pathway and protecting the integrity of blood-milk barrier. Int Immunopharmacol 78:105972

    CAS  PubMed  Google Scholar 

  43. Jing H, Zhang Q, Li S, Gao XJ (2020) Pb exposure triggers MAPK-dependent inflammation by activating oxidative stress and miRNA-155 expression in carp head kidney. Fish Shellfish Immunol 106:219–227

    CAS  PubMed  Google Scholar 

  44. Nagarajan S, Bedi U, Budida A, Hamdan F, Mishra V, Najafova Z, Xie W, Alawi M, Indenbirken D, Knapp S, Chiang C, Grundhoff A, Kari V, Scheel C, Wegwitz F, Johnsen S (2017) BRD4 promotes p63 and GRHL3 expression downstream of FOXO in mammary epithelial cells. Nucleic Acids Res 45:3130–3145

    CAS  PubMed  Google Scholar 

  45. Jing H, Wang S, Wang Y, Shen N, Gao XJ (2020) Environmental contaminant ammonia triggers epithelial-to-mesenchymal transition-mediated jejunal fibrosis with the disassembly of epithelial cell-cell contacts in chicken. Sci Total Environ 726:138686

    CAS  PubMed  Google Scholar 

  46. Brunet A, Bonni A, Zigmond M, Lin M, Juo P, Hu L, Anderson M, Arden K, Blenis J, Greenberg M (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    CAS  PubMed  Google Scholar 

  47. Zhang M, Zhang X (2019) The role of PI3K/AKT/FOXO signaling in psoriasis. Arch Dermatol Res 311:83–91

    PubMed  Google Scholar 

  48. Li B, Xi P, Wang Z, Han X, Xu Y, Zhang Y, Miao J (2018) PI3K/Akt/mTOR signaling pathway participates in Streptococcus uberis-induced inflammation in mammary epithelial cells in concert with the classical TLRs/NF-ĸB pathway. Vet Microbiol 227:103–111

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-yao Guo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, H., Chen, Y., Liang, W. et al. Effects of Selenium on MAC-T Cells in Bovine Mastitis: Transcriptome Analysis of Exosomal mRNA Interactions. Biol Trace Elem Res 199, 2904–2912 (2021). https://doi.org/10.1007/s12011-020-02439-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02439-7

Keywords

Navigation