Skip to main content
Log in

Phytochemicals, Trace Element Contents, and Antioxidant Activities of Bark of Taleh (Acacia seyal) and Desert Rose (Adenium obesum)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Acacia seyal and Adenium obesum are used in traditional medicines by indigenous communities of the Asir region of Saudi Arabia. The present study aimed to acquire the phytochemical profiles, quantify the trace element contents and the total phenolic (TPC) and flavonoid (TFC) contents, and evaluate the antioxidant activity of the two species. Phytochemical screening was conducted to detect the presence of the phytochemical constituents. Bark samples were digested with a microwave, and ICP-MS was used for the elemental analysis. The antioxidant capacities in DPPH, H2O2, and FRAP assays and the TPC and TFC were determined by spectrophotometry, and their correlation with the IC50 of the DPPH and H2O2 and the EC50 of the FRAP capacities were analyzed by Pearson’s correlation. Both plant extracts contain a variety of phytochemicals. A. obesum had the highest concentrations of all 11 elements measured. In both plants, manganese was found at the highest concentration, and cadmium exhibited the lowest concentration. The aqueous-methanolic extract of A. seyal showed the highest TPC (309.32 ± 2.15 mg gallic acid equivalent/g), whereas the aqueous-methanolic extract of A. obesum exhibited the highest TFC (32.16 ± 3.16 mg quercetin equivalent/g). Significant differences in the IC50 and EC50 values were observed among the tested plant extracts. The highest antioxidant activity was found in aqueous-methanolic extract of A. obesum. Correlation analysis showed significant correlations between the DPPH and FRAP activities and the TFC. The present findings highlight that these plants are good sources of phenolic compounds and essential elements and support their therapeutic use as antioxidant drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mahomoodally MF (2013) Traditional medicines in Africa: an appraisal of ten potent African medicinal plants. Evid Based Complement Altern Med:617459. https://doi.org/10.1155/2013/617459

  2. Szentmihályi K, Marczal G, Then M (2006) Medicinal plants in view of trace elements. Thaiszia - J Bot, Košice 16:99–107

    Google Scholar 

  3. Rajan JP, Singh KB, Kumar S, Mishra KR (2014) Trace elements content in the selected medicinal plants traditionally used for curing skin diseases by the natives of Mizoram, India. Asian Pac J Trop Med 7(Suppl 1):S410–S414

    CAS  Google Scholar 

  4. Rahman MA, Mossa JS, Al-Said MS, Al-Yahya MA (2004) Medicinal plant diversity in the flora of Saudi Arabia 1: a report on seven plant families. Fitoterapia 75:149–161

    PubMed  Google Scholar 

  5. Diouf F, Diouf D, Klonowska A, le Queré A, Bakhoum N, Fall D, Neyra M, Parrinello H, Diouf M, Ndoye I, Moulin L (2015) Genetic and genomic diversity studies of Acacia symbionts in Senegal reveal new species of Mesorhizobium with a putative geographical pattern. PLoS One 10(2):e0117667

    PubMed  PubMed Central  Google Scholar 

  6. Awad SS, Rabah AA, Ali HI, Mahmoud TE (2018) Acacia Seyal gums in Sudan: ecology and economic contribution. In: Mariod AA (ed) Gum arabic: structure, properties, application and economics. Academic Press, Elsevier, London, pp 3–11

    Google Scholar 

  7. Abdel-Farid IB, Sheded MG, Mohamed EA (2014) Metabolomic profiling and antioxidant activity of some Acacia species. Saudi J Biol Sci 21(5):400–408

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Eldeen IMS, Van Staden J (2008) Cyclooxygenase inhibition and anti-mycobacterial effects of extracts from Sudanese medicinal plants. South Afr J Bot 74:225–229

    Google Scholar 

  9. Al-Fatimi M, Wurster M, Schröder G, Lindequist U (2007) Antioxidant, antimicrobial and cytotoxic activities of selected medicinal plants from Yemen. J Ethnopharmacol 111:657–666

    PubMed  Google Scholar 

  10. Kanchanapoom K, Sunheem S, Kanchanapoom K (2010) In vitro propagation of Adenium obesum (Forssk.) Roem. and Schult. Not Bot Horti Agrobo 38(3):209–213

    CAS  Google Scholar 

  11. Oyen LPA (2008) Adenium obesum (Forssk.) Roem. & Schult. In: Schmelzer GH, Gurib-Fakim A (eds) Plant resources of tropical Africa 11(1). Medicinal plants 1. PROTA Foundation, Netherlands, pp 46–49

    Google Scholar 

  12. Abulafatih HA (1987) Medicinal plants in southwestern Saudi Arabia. Econ Bot 41(3):354–360

    Google Scholar 

  13. McBride K, Henny RJ, Chen J, Mellich TA (2014) Effect of light intensity and nutritional level on growth and flowering of Adenium obesum ‘Red’ and Ice Pink’. HortScience 49:430–433

    Google Scholar 

  14. Alseini AII (2014) Total phenolic, total flavonoid contents and radical scavenging activities of 10 Arabian herbs and spices. Unique J Pharm Biol Sci 2(3):5–11

    Google Scholar 

  15. Bungihan ME, Matias CA (2013) Determination of the antioxidant, phytochemical and antibacterial profiles of flowers from selected ornamental plants in Nueva Vizcaya, Philippines. J Agric Sci Tech B 3:833–841

    CAS  Google Scholar 

  16. Ebrahim N, Kershi RM, Rastrelli L (2013) Free radical scavenging activity and anthocyanin in flower of Adenium obesum collected from Yemen. J Pharm Phytother 1:5–7

    Google Scholar 

  17. Elgebaly H, Germoush M, Mosa N et al (2020) Adenium obesum flowers extract mitigates testicular injury and oxidative stress in streptozotocin-induced diabetic rats. Int J Pharmacol 16(4):310–318

    CAS  Google Scholar 

  18. Al-Ghudani MKN, Hossain MA (2015) Determination of total phenolics, flavonoids and antioxidant activity of root crude extracts of Adenium obesum traditionally used for the treatment of bone dislocations and rheumatism. Asian Pac J Trop Dis 5:S155–S158

    CAS  Google Scholar 

  19. Hossain MA, Alabri THA, Al Musalami AHS, Akhtar MS, Said S (2014) Evaluation of in vitro antioxidant potential of different polarities stem crude extracts by different extraction methods of Adenium obesum. J Coast Life Med 2(9):699–703

    Google Scholar 

  20. Hammiche V, Maiza K (2006) Traditional medicine in Central Sahara: pharmacopoeia of Tassili N’ajjer. J Ethnopharmacol 105:358–367

    PubMed  Google Scholar 

  21. Suleiman MHA (2015) An ethnobotanical survey of medicinal plants used by communities of Northern Kordofan region, Sudan. J Ethnopharmacol 176:232–242

    PubMed  Google Scholar 

  22. Muddathir AM, Mitsunaga T (2013) Evaluation of anti-acne activity of selected Sudanese medicinal plants. J Wood Sci 59:73–79

    CAS  Google Scholar 

  23. Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestree database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya. http://worldagroforestry.org/output/agroforestree-database. Accessed 30 Dec 2018

  24. Eltayeb IM, Elhassan IA, Hasabelrasoul J, Salaheldin E (2017) A comparative study of chemical composition of Acacia seyal stem, stem wood and stem bark dry distillates used by Sudanese’s women as cosmetic and medicine. Int J Pharm Pharm Sci 9:218–224

    CAS  Google Scholar 

  25. Abdel-Kader MS, Hazazi AMA, Elmakki OA, Alqasoumi SI (2018) A survey on traditional plants used in Al Khobah village. Saudi Pharm J 26(6):817–821

    PubMed  PubMed Central  Google Scholar 

  26. El-shabasy A (2016) Survey on medicinal plants in the flora of Jizan Region, Saudi Arabia. Int J Botany Stud 2:38–59

    Google Scholar 

  27. Al-Fatimi M (2019) Ethnobotanical survey of medicinal plants in central Abyan governorate, Yemen. J Ethnopharmacol 241:111973

    PubMed  Google Scholar 

  28. Tounekti T, Mahdhi M, Khemira H (2019) Ethnobotanical study of indigenous medicinal plants of Jazan Region, Saudi Arabia. Evid Based Complement Altern Med 2019:3190670

    Google Scholar 

  29. Hossain MA, Al-Abri THA, Al-Musalami AHS, Akhtar MS, Said S (2014) Evaluation of different extraction methods on antimicrobial potency of Adenium obesum stem against food borne pathogenic bacterial strains in Oman. Asian Pac J Trop Dis 4(2):S985–S989

    Google Scholar 

  30. Nadi AA (2017) Diversity of medicinal plants used in the treatment of skin diseases in Tabuk region, Saudi Arabia. J Med Plant Res 11(35):549–555

    Google Scholar 

  31. Tijjani A, Ndukwe IG, Ayo RG (2012) Isolation and characterization of lup-20(29)-ene-3, 28-diol (Betulin) from the stem-bark of Adenium obesum (Apocynaceae). Trop J Pharm Res 11(2):259–262

    CAS  Google Scholar 

  32. Naji E, Rershi SM, Luca R (2013) Free radical scavenging activity and anthocyanin in flower of Adenium obesum collected from Yemen. J Pharmacogn Phytother 1:5–7

    Google Scholar 

  33. Akharaiyi FC (2011) Antibacterial, phytochemical and antioxidant activities of Datura metel. Int J PharmTech Res 3(1):478–483

    Google Scholar 

  34. Gradé JT, Tabuti JRS, Van Damme P (2009) Ethnoveterinary knowledge in pastoral Karamoja, Uganda. J Ethnopharmacol 122:273–293

    PubMed  Google Scholar 

  35. Dharani N, Yenesew A, Aynekulu E, Tuei B, Jamnadass R (2015) Traditional ethnoveterinary medicine in East Africa: a manual on the use of medicinal plants. The World Agroforestry Centre, Nairobi

    Google Scholar 

  36. Ali AQ, Abul Farah M, Abou-Tarboush FM et al (2019) Cytogenotoxic effects of Adenium obesum seeds extracts on breast cancer cells. Saudi J Biol Sci 26:547–553

    CAS  PubMed  Google Scholar 

  37. Almehdar H, Abdallah HM, Osman AMM, Abdel-Sattar EA (2012) In vitro cytotoxic screening of selected Saudi medicinal plants. J Nat Med 66:406–412

    PubMed  Google Scholar 

  38. Kiyohara H, Ichino C, Kawamura Y et al (2012) In vitro anti-influenza virus activity of a cardiotonic glycoside from Adenium obesum (Forssk.). Phytomedicine 19:111–114

    CAS  PubMed  Google Scholar 

  39. Abalaka SE, Fatihu MY, Ibrahim NDG, Ambali SF (2013) Exploitation of ethanol extract of Adenium obesum stem bark as a potent organic piscicide. Res J Biol Sci 8(5):143–149

    Google Scholar 

  40. Versiani MA, Ahmed SK, Ikram A, Ali ST, Yasmeen K, Faizi S (2014) Chemical constituents and biological activities of Adenium obesum (Forsk.) Roem. et Schult. Chem Biodivers 11:171–180

    CAS  PubMed  Google Scholar 

  41. Ahmed SK, Versiani MA, Ikram A, Abdul Sattar S, Faizi S (2017) Cytotoxic cardiac glycosides from the fruit (pods) of Adenium obesum (Forssk.) Roem. & Schult. Nat Prod Res 31(10):1205–1208

    CAS  PubMed  Google Scholar 

  42. Akhtar MS, Hossain MA, Said SA (2016) Isolation and characterization of antimicrobial compound from the stem-bark of the traditionally used medicinal plant Adenium obesum. J Tradit Complement Med 7(3):296–300

    PubMed  PubMed Central  Google Scholar 

  43. Meda NR, Fraisse D, Gnoula C, Peyrode C, Texier O, Senejoux F, Felgines C (2016) Characterization and quantification of polyphenolic compounds from Adenium obesum leaves. Chem Nat Compd 52(1):134–135

    CAS  Google Scholar 

  44. Hossain MA, Akhtar MS, Said S, Al-Abri THA (2017) Two new flavonoids from Adenium obesum grown in Oman. J King Saud Univ Sci 29:62–69

    Google Scholar 

  45. The Plant List (2013) Version 1.1. Published on the Internet; http://www.theplantlist.org/ [Accessed 15 May 2018]

  46. Edeoga HO, Okwu DE, Mbaebie BO (2005) Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol 4(7):685–688

    CAS  Google Scholar 

  47. Brima EI (2017) Toxic elements in different medicinal plants and the impact on human health. Int J Environ Res Public Health 14:1209

    PubMed Central  Google Scholar 

  48. Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M (2002) Free radical scavenging properties of wheat extracts. J Agric Food Chem 50:1619–1624

    CAS  PubMed  Google Scholar 

  49. Ordoñez AAL, Gomez JD, Vattuone MA, Lsla MI (2006) Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem 97:452–458

    Google Scholar 

  50. Murthy NK, Pushpalatha KC, Joshi CG (2011) Antioxidant activity and phytochemical analysis of endophytic fungi isolated from Lobelia nicotianifolia. J Chem Pharm Res 3(5):218–225

    CAS  Google Scholar 

  51. Ruch RJ, Cheng SJ, Klaunig JF (1989) Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003–1008

    CAS  PubMed  Google Scholar 

  52. Benzie IFF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27

    CAS  PubMed  Google Scholar 

  53. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Thawabteh A, Juma S, Bader M, Karaman D, Scrano L, Bufo SA, Karaman R (2019) The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins 11:656. https://doi.org/10.3390/toxins11110656

    Article  CAS  PubMed Central  Google Scholar 

  55. Bribi N (2018) Pharmacological activity of alkaloids: a review. Asian J Bot 1:1–6

    Google Scholar 

  56. Gurfinkel DM, Rao AV (2003) Soyasaponins: the relationship between chemical structure and colon anticarcinogenic activity. Nutr Cancer 47:24–33

    CAS  PubMed  Google Scholar 

  57. Street R, Száková J, Drábek O, Mládková L (2006) The status of micronutrients (Cu, Fe, Mn, Zn) in tea and tea infusions in selected samples imported to the Czech Republic. Czech J Food Sci 24:62–71

    CAS  Google Scholar 

  58. Tinker PB (1981) Levels, distribution and chemical forms of trace elements in food plants. Philos Trans R Soc B 294:41–55

    CAS  Google Scholar 

  59. Williams M, Todd GD, Roney N et al (2012) Toxicological profile for manganese. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); Sep. 3, HEALTH EFFECTS. https://www.ncbi.nlm.nih.gov/books/NBK158868/. Accessed 11 June 2020

  60. Son EW, Lee SR, Choi HS, Koo HJ (2007) Effects of supplementation with higher levels of manganese and magnesium on immune function. Arch Pharm Res 30(6):743–749

    CAS  PubMed  Google Scholar 

  61. Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Asp Med 26(4–5):235–244. https://doi.org/10.1016/j.mam.2005.07.013

    Article  CAS  Google Scholar 

  62. Marmiroli N, Maestri E (2008) Health implications of trace elements in the environment and food chain. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, Hoboken, pp 23–53

    Google Scholar 

  63. Marume A, Khoza S, Matope G, Nyakudya TT, Mduluza T, Ndhlala AR (2017) Antioxidant properties, protein binding capacity and mineral contents of some plants traditionally used in the management of animal wounds. S Afr J Bot 111:23–28

    CAS  Google Scholar 

  64. Demling RH (2009) Nutrition, anabolism, and the wound healing process: an overview. ePlasty 9:65–94

    Google Scholar 

  65. Berger MM, Baines M, Raffoul W, Benathan M, Chiolero RL, Reeves C, Revelly JP, Cayeux MC, Sénéchaud I, Shenkin A (2007) Trace element supplementation after major burns modulates antioxidant status and clinical course by way of increased tissue trace element concentrations. Am J Clin Nutr 85:1293–1300

    CAS  PubMed  Google Scholar 

  66. Swain S, Rautray TR (2020) Estimation of trace elements, antioxidants, and antibacterial agents of regularly consumed Indian medicinal plants. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02228-2

  67. Baker RD, Baker SS, Larosa K, Whitney C, Newburger PE (1993) Selenium regulation of glutathione peroxidase in human hepatoma cell line Hep3B. Arch Biochem Biophys 304(1):53–57

    CAS  PubMed  Google Scholar 

  68. Kim JH, Park SH, Nam SW, Choi YH (2012) Gastroprotective effect of selenium on ethanol-induced gastric damage in rats. Int J Mol Sci 13(5):5740–5750. https://doi.org/10.3390/ijms13055740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Adriano DC (2013) Trace elements in terrestrial environments biogeochemistry, bioavailability, and risks of metals. Springer, New York

    Google Scholar 

  70. Wani AL, Anjum ARA, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8(2):55–64

    CAS  PubMed  PubMed Central  Google Scholar 

  71. FAO/WHO (2002) Codex Alimentarius general standards for contaminants and toxins in food. Schedule 1 Maximum and guideline levels for contaminants and toxins in food. Reference CX/FAC 02/16. Joint FAO/WHO Food Standards Programme, Codex Committee, Rotterdam

    Google Scholar 

  72. Hua Y, Clark S, Ren J, Sreejayan N (2012) Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem 23(4):313–319

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sampaio BL, Bara MTF, Ferri PH, Santos SC, de Paula JR (2011) Influence of environmental factors on the concentration of phenolic compounds in leaves of Lafoensia pacari. Braz J Pharmacogn 21(6):1127–1137

    CAS  Google Scholar 

  74. Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    CAS  PubMed  Google Scholar 

  75. Wong CC, Li HB, Cheng KW, Chen F (2006) A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 97:705–711

    CAS  Google Scholar 

  76. Dudonné S, Vitrac X, Coutierè P, Woillez M, Mérillon J-M (2009) Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 57:1768–1774

    PubMed  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research program under grant number G. R.P-105-40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed H. A. Suleiman.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleiman, M.H.A., Brima, E.I. Phytochemicals, Trace Element Contents, and Antioxidant Activities of Bark of Taleh (Acacia seyal) and Desert Rose (Adenium obesum). Biol Trace Elem Res 199, 3135–3146 (2021). https://doi.org/10.1007/s12011-020-02428-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02428-w

Keywords

Navigation