Skip to main content
Log in

Multiple Chemosensory Neurons Mediate Avoidance Behavior to Rare Earth Ions in Caenorhabditis elegans

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

As rare earth (RE) metals are abundantly present in the soil, in spite of their name, it is conceivable that organisms may encounter and interact with RE ions. In the present study, we demonstrated that the soil nematode Caenorhabditis elegans avoids RE ions, such as yttrium and all examined lanthanide ions, which exhibit toxic effects on nematodes. We also demonstrated that the chemosensory system of this animal mediates avoidance behavior toward RE ions similar to heavy metal (HM) ion avoidance. The C. elegans dyf-11(pe554) mutant is unable to respond to chemosensory cues because it lacks all ciliated endings of the chemosensory neurons required for the detection of environmental chemicals. Cell-specific rescue of the dyf-11 mutant and cell-specific genetic ablation studies revealed that the avoidance behavior toward HM and RE ions was mediated by a partially overlapping but distinct subset of chemosensory neurons (ASH, ADL, ASE, ADF, and ASK). With the help of multiple chemosensory neurons, worms may improve the fidelity of avoidance behavior to evade RE ions. Among the chemosensory neurons in C. elegans, ADF and ASK neurons were involved in RE avoidance, but not in HM avoidance. These results suggested that ADF and ASK neurons in C. elegans have RE-selective mechanisms to mediate the avoidance response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of Data and Materials

All data are presented in the manuscript and in the ESMs. All materials are available upon request.

References

  1. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. Mol Clin Environ Toxicol:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

  2. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512. https://doi.org/10.1007/s00204-008-0313-y

    Article  CAS  PubMed  Google Scholar 

  3. Wakabayashi T, Ymamoto A, Kazaana A, Nakano Y, Nojiri Y, Kashiwazaki M (2016) Antibacterial, antifungal and nematicidal activities of rare earth ions. Biol Trace Elem Res 174:464–470. https://doi.org/10.1007/s12011-016-0727-y

    Article  CAS  PubMed  Google Scholar 

  4. Wakabayashi T, Nakano Y (2019) Stress responses against rare earth ions are mediated by the JNK and p38 MAPK pathways in Caenorhabditis elegans. Biol Trace Elem Res 190:550–555. https://doi.org/10.1007/s12011-018-1577-6

    Article  CAS  PubMed  Google Scholar 

  5. Jiang N, Wang L, Lu T, Huang X (2011) Toxic effect of terbium ion on horseradish cell. Biol Trace Elem Res 143:1722–1728. https://doi.org/10.1007/s12011-011-8968-2

    Article  CAS  PubMed  Google Scholar 

  6. Hong J, Yu X, Pan X, Zhao X, Sheng L, Sang X, Lin A, Zhang C, Zhao Y, Gui S, Sun Q, Wang L, Hong F (2014) Pulmonary toxicity in mice following exposure to cerium chloride. Biol Trace Elem Res 159:269–277. https://doi.org/10.1007/s12011-014-9953-3

    Article  CAS  PubMed  Google Scholar 

  7. Pagano G, Guida M, Siciliano A, Oral R, Koçbaş F, Palumbo A, Castellano I, Migliaccio O, Thomas PJ, Trifuoggi M (2016) Comparative toxicities of selected rare earth elements: sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects. Environ Res 147:453–460. https://doi.org/10.1016/j.envres.2016.02.031

    Article  CAS  PubMed  Google Scholar 

  8. Sambongi Y, Nagae T, Liu Y, Yoshimizu T, Takeda K, Wada Y, Futai M (1999) Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. Neuroreport 10:753–757. https://doi.org/10.1097/00001756-199903170-00017

    Article  CAS  PubMed  Google Scholar 

  9. Roh JY, Lee J, Choi J (2006) Assessment of stress-related gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ Toxicol Chem 25:2946–2956. https://doi.org/10.1897/05-676R.1

    Article  CAS  PubMed  Google Scholar 

  10. Shen L, Xiao J, Ye H, Wang D (2009) Toxicity evaluation in nematode Caenorhabditis elegans after chronic metal exposure. Environ Toxicol Pharmacol 28:125–132. https://doi.org/10.1016/j.etap.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  11. Mizuno T, Hisamoto N, Terada T et al (2004) The Caenorhabditis elegans MAPK phosphatase pathway in stress response. 23:2226–2234. https://doi.org/10.1038/sj.emboj.7600226

  12. Inoue H, Hisamoto N, An JH, Oliveira RP, Nishida E, Blackwell TK, Matsumoto K (2005) The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev 19:2278–2283. https://doi.org/10.1101/gad.1324805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dusenbery DB (1974) Analysis of chemotaxis in the nematode Caenorhabditis elegans by countercurrent separation. J Exp Zool 188:41–47. https://doi.org/10.1002/jez.1401880105

    Article  CAS  PubMed  Google Scholar 

  14. Bargmann CI, Horvitz RH (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7:729–742

    Article  CAS  Google Scholar 

  15. Sambongi Y, Takeda K, Wakabayashi T, Ueda I, Wada Y, Futai M (2000) Caenorhabditis elegans senses protons through amphid chemosensory neurons: proton signals elicit avoidance behavior. Neuroreport 11:2229–2232. https://doi.org/10.1097/00001756-200007140-00033

    Article  CAS  PubMed  Google Scholar 

  16. Freedman JH, Slice LW, Dixons D et al (1993) The novel metallothionein genes of Caenorhabditis elegans. J Biol Chem 268:2554–2564

    Article  CAS  Google Scholar 

  17. Swain S, Keusekotten K, Baumeister R, Sturzenbaum S (2004) C. elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J Mol Biol 341:951–959

    Article  CAS  Google Scholar 

  18. Hughes SL, Bundy JG, Want EJ, Kille P, Stürzenbaum SR (2009) The metabolomic responses of Caenorhabditis elegans to cadmium are largely independent of metallothionein status, but dominated by changes in cystathionine and phytochelatins. J Proteome Res 8:3512–3519. https://doi.org/10.1021/pr9001806

    Article  CAS  PubMed  Google Scholar 

  19. Schwartz MS, Benci JL, Selote DS, Sharma AK, Chen AGY, Dang H, Fares H, Vatamaniuk OK (2010) Detoxification of multiple heavy metals by a half-molecule ABC transporter, HMT-1, and coelomocytes of Caenorhabditis elegans. PLoS One 5:e9564. https://doi.org/10.1371/journal.pone.0009564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Broeks A, Gerrard B, Allikmets R, Dean M, Plasterk RH (1996) Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis elegans. EMBO J 15:6132–6143. https://doi.org/10.1002/j.1460-2075.1996.tb01001.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Culotti JG, Russell RL (1978) Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics 90:243–256

    Article  CAS  Google Scholar 

  22. Bargmann CI (2006) Chemosensation in C. elegans. WormBook:1–29. https://doi.org/10.1895/wormbook.1.123.1

  23. Wakabayashi T, Sakata K, Togashi T, Itoi H, Shinohe S, Watanabe M, Shingai R (2015) Navigational choice between reversal and curve during acidic pH avoidance behavior in Caenorhabditis elegans. BMC Neurosci 16:79. https://doi.org/10.1186/s12868-015-0220-0

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hilliard MA, Bergamasco C, Arbucci S, Plasterk RHA, Bazzicalupo P (2004) Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans. EMBO J 23:1101–1111. https://doi.org/10.1038/sj.emboj.7600107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hilliard MA, Bargmann CI, Bazzicalupo P (2002) C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr Biol 12:730–734. https://doi.org/10.1016/S0960-9822(02)00813-8

    Article  CAS  PubMed  Google Scholar 

  26. Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5:956–964. https://doi.org/10.1523/jneurosci.05-04-00956.1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng Y, Brockie PJ, Mellem JE, Madsen DM, Maricq AV (1999) Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron 24:347–361. https://doi.org/10.1016/S0896-6273(00)80849-1

    Article  CAS  PubMed  Google Scholar 

  28. Chelur DS, Chalfie M (2007) Targeted cell killing by reconstituted caspases. Proc Natl Acad Sci U S A 104:2283–2288. https://doi.org/10.1073/pnas.0610877104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shingai R, Ichijo H, Wakabayashi T et al (2014) Chemotaxis behavior toward an odor is regulated by constant sodium chloride stimulus in Caenorhabditis elegans. Neurosci Res 81–82:51–54

    Article  Google Scholar 

  30. Kunitomo H, Iino Y (2008) Caenorhabditis elegans DYF-11, an orthologue of mammalian Traf3ip1/MIP-T3, is required for sensory cilia formation. Genes Cells 13:13–25. https://doi.org/10.1111/j.1365-2443.2007.01147.x

    Article  CAS  PubMed  Google Scholar 

  31. Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10:3959–3970. https://doi.org/10.1002/j.1460-2075.1991.tb04966.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    Article  CAS  Google Scholar 

  33. Pang X, Li D, Peng A (2002) Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environ Sci Pollut Res Int 9:143–148. https://doi.org/10.1007/BF02987718

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hirofumi Kunitomo and Dr. Yuichi Iino of the University of Tokyo for providing the transgenic strains. We would like to thank Editage (www.editage.com) for English language editing.

Funding

This study was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI with a Grant-in-Aid for Scientific Research (C) (B264207180) to TW. Nematode strains were provided by the Caenorhabditis Genetics Center, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokumitsu Wakabayashi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1325 kb).

ESM 2

(XLSX 11 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakabayashi, T., Nojiri, Y. & Takahashi-Watanabe, M. Multiple Chemosensory Neurons Mediate Avoidance Behavior to Rare Earth Ions in Caenorhabditis elegans. Biol Trace Elem Res 199, 2764–2769 (2021). https://doi.org/10.1007/s12011-020-02375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02375-6

Keywords

Navigation