Skip to main content

Safety Assessments of Nickel Boride Nanoparticles on the Human Pulmonary Alveolar Cells by Using Cell Viability and Gene Expression Analyses

Abstract

Nickel boride is generally used in the steel industry as a melting accelerator due to its feature of creating a protective and stable attribute at high temperatures. It is also used to improve the hardenability of the steel with boron addition in the production. Thus, safety studies and biocompatibility analysis of nickel boride should be performed comprehensively to understand the limitations of use in various areas. In the present study, nickel boride nanoparticles (Ni2B NPs) were synthesized by a single-step method and molecule characterizations were performed via the use of X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analyses. Cytotoxicity properties of Ni2B NPs were identified on human pulmonary alveolar epithelial cells (HPAEpiC) by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR), and lactate dehydrogenase (LDH) assays. Illumina human ht-12 v4.0 whole-genome microarray analysis was conducted to investigate NiB2 NPs effects on gene expression regulations of HPAEpiC cells. The database for annotation, visualization, and integrated discovery (DAVID) analysis was performed to reveal the relationship between Ni2B NP application and cellular pathway alterations. According to cytotoxicity analysis, the IC50 value for Ni2B NP application was found as 81.99 mg/L concentration. Microarray analysis of Ni2B NP application was shown for the first time that 693 gene expression changes (FC ≥ 2) occurred significantly over 40.000 gene probes and Ni2B NPs were observed to affect microtubule regulation, centrosome organization, and phosphoprotein synthesis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Acharya S, Debata M, Acharya TS, Acharya PP, Singh SK (2016) Influence of nickel boride addition on sintering behaviour and mechanical properties of TiC–Ni based cermets. J Alloys Compd 685:905–912. https://doi.org/10.1016/j.jallcom.2016.06.122

    CAS  Article  Google Scholar 

  2. Mueller HOMESEM (2016) Binary alloy phase diagrams. In: Alloy Phase Diagrams. ASM International, pp. 89–89

  3. Debata M, Upadhyaya A (2004) Effect of boron addition on sintering of tungsten based alloys. J Mater Sci 39:2539–2541. https://doi.org/10.1023/B:JMSC.0000020023.21159.e5

    CAS  Article  Google Scholar 

  4. Gülsoy HÖ, Salman S (2005) Microstructures and mechanical properties of injection molded 17-4PH stainless steel powder with nickel boride additions. J Mater Sci 40:3415–3421. https://doi.org/10.1007/s10853-005-0432-2

    CAS  Article  Google Scholar 

  5. DENG D, WANG C, LIU Q, NIU T (2015) Effect of standard heat treatment on microstructure and properties of borided Inconel 718. Trans Nonferrous Metals Soc China 25:437–443. https://doi.org/10.1016/S1003-6326(15)63621-4

    CAS  Article  Google Scholar 

  6. Sista V, Kahvecioglu O, Kartal G, Zeng QZ, Kim JH, Eryilmaz OL, Erdemir A (2013) Evaluation of electrochemical boriding of Inconel 600. Surf Coat Technol 215:452–459. https://doi.org/10.1016/j.surfcoat.2012.08.083

    CAS  Article  Google Scholar 

  7. Ueda N, Mizukoshi T, Demizu K, Sone T, Ikenaga A, Kawamoto M (2000) Boriding of nickel by the powder-pack method. Surf Coat Technol 126:25–30. https://doi.org/10.1016/S0257-8972(00)00517-X

    CAS  Article  Google Scholar 

  8. Subramaniam VD, Prasad SV, Banerjee A, Gopinath M, Murugesan R, Marotta F, Sun XF, Pathak S (2018) Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug Chem Toxicol 42:84–93. https://doi.org/10.1080/01480545.2018.1491987

    CAS  Article  PubMed  Google Scholar 

  9. Dietz GPH, Bähr M (2004) Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 27:85–131

    CAS  Article  Google Scholar 

  10. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199. https://doi.org/10.1006/taap.2001.9240

    CAS  Article  PubMed  Google Scholar 

  11. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49. https://doi.org/10.1002/smll.200700595

    CAS  Article  PubMed  Google Scholar 

  12. Turkez H, Arslan ME, Ozdemir O (2017) Genotoxicity testing: progress and prospects for the next decade. Expert Opin Drug Metab Toxicol 13:1–10. https://doi.org/10.1080/17425255.2017.1375097

    CAS  Article  Google Scholar 

  13. Liu Y, Wang J (2013) Effects of DMSA-coated Fe3O4 nanoparticles on the transcription of genes related to iron and osmosis homeostasis. Toxicol Sci 131:521–536. https://doi.org/10.1093/toxsci/kfs300

    CAS  Article  PubMed  Google Scholar 

  14. Li X, He Q, Shi J (2014) Global gene expression analysis of cellular death mechanisms induced by mesoporous silica nanoparticle-based drug delivery system. ACS Nano 8:1309–1320. https://doi.org/10.1021/nn4046985

    CAS  Article  PubMed  Google Scholar 

  15. Kedziorek DA, Muja N, Walczak P, Ruiz-Cabello J, Gilad AA, Jie CC, Bulte JWM (2010) Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn Reson Med 63:1031–1043. https://doi.org/10.1002/mrm.22290

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Chen M, Zhang M, Borlak J, Tong W (2012) A decade of toxicogenomic research and its contribution to toxicological science. Toxicol Sci 130:217–228. https://doi.org/10.1093/toxsci/kfs223

    CAS  Article  PubMed  Google Scholar 

  17. Türkez H, Arslan ME, Sönmez E, Tatar A, Açikyildiz M, Geyikoğlu F (2017) Toxicogenomic responses of human alveolar epithelial cells to tungsten boride nanoparticles. Chem Biol Interact 273:257–265. https://doi.org/10.1016/j.cbi.2017.06.027

    CAS  Article  PubMed  Google Scholar 

  18. Türkez H, Arslan ME, Sönmez E, Geyikoğlu F, Açıkyıldız M, Tatar A (2019) Microarray assisted toxicological investigations of boron carbide nanoparticles on human primary alveolar epithelial cells. Chem Biol Interact 300:131–137. https://doi.org/10.1016/j.cbi.2019.01.021

    CAS  Article  PubMed  Google Scholar 

  19. Türkez H, Arslan ME, Sönmez E, Açikyildiz M, Tatar A, Geyikoğlu F (2019) Synthesis, characterization and cytotoxicity of boron nitride nanoparticles: emphasis on toxicogenomics. Cytotechnology. 71:351–361. https://doi.org/10.1007/s10616-019-00292-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Shahbazi M, Cathey H, Danilova N, Mackinnon I (2018) Single step process for crystalline Ni-B compounds. Materials (Basel) 11:1259. https://doi.org/10.3390/ma11071259

    CAS  Article  Google Scholar 

  21. Turkez H, Sönmez E, Di Stefano A, Mokhtar YI (2016) Health risk assessments of lithium titanate nanoparticles in rat liver cell model for its safe applications in nanopharmacology and nanomedicine. Cytotechnology 68:291–302. https://doi.org/10.1007/s10616-014-9780-6

    CAS  Article  PubMed  Google Scholar 

  22. Baxter RC (2015) Nuclear actions of insulin-like growth factor binding protein-3. Gene 569:7–13. https://doi.org/10.1016/j.gene.2015.06.028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Xu C, Hu D, Zhu Q (2013) eEF1A2 promotes cell migration, invasion and metastasis in pancreatic cancer by upregulating MMP-9 expression through Akt activation. Clin Exp Metastasis 30:933–944. https://doi.org/10.1007/s10585-013-9593-6

    CAS  Article  PubMed  Google Scholar 

  24. Feng Z, Li JN, Wang L, Pu YF, Wang Y, Guo CB (2014) The prognostic value of glycerol-3-phosphate dehydrogenase 1-like expression in head and neck squamous cell carcinoma. Histopathology 64:348–355. https://doi.org/10.1111/his.12258

    Article  PubMed  Google Scholar 

  25. Coenen MJH, Antonicka H, Ugalde C, Sasarman F, Rossi R, Heister JGAMA, Newbold RF, Trijbels FJMF, van den Heuvel LP, Shoubridge EA, Smeitink JAM (2004) Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency. N Engl J Med 351:2080–2086. https://doi.org/10.1056/NEJMoa041878

    CAS  Article  PubMed  Google Scholar 

  26. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H, ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Article  Google Scholar 

  27. Hoet PHM, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles - known and unknown health risks. J Nanobiotechnology 2:12

    Article  Google Scholar 

  28. Özkan Gülsoy H (2005) Influence of nickel boride additions on sintering behaviors of injection moulded 17-4 PH stainless steel powder. Scr Mater 52:187–192. https://doi.org/10.1016/j.scriptamat.2004.09.032

    CAS  Article  Google Scholar 

  29. Nickel boride CAS 12007-01-1 | 843836. https://www.merckmillipore.com/TR/tr/product/Nickel-boride,MDA_CHEM-843836?bd=1#anchor_Safety Information. Accessed 20 Jul 2020

  30. Rudel RA, Attfield KR, Schifano JN, Brody JG (2007) Chemicals causing mammary gland tumors in animals signal new directions for epidemiology, chemicals testing, and risk assessment for breast cancer prevention. Cancer 109:2635–2666

    CAS  Article  Google Scholar 

  31. Sood S, Choudhary S, Wang HCR (2013) Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin. Biochem Biophys Res Commun 438:600–606. https://doi.org/10.1016/j.bbrc.2013.08.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Bollati V, Fabris S, Pegoraro V, Ronchetti D, Mosca L, Deliliers GL, Motta V, Bertazzi PA, Baccarelli A, Neri A (2009) Imported from https://academic.oup.com/carcin/issue/36/Suppl_1. Carcinogenesis 30:1330–1335. https://doi.org/10.1093/CARCIN

  33. Hou YL, Luo P, Ji G y, Chen H (2019) Clinical significance of serum IGFBP-3 in colorectal cancer. J Clin Lab Anal 33:e22912. https://doi.org/10.1002/jcla.22912

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Yang L, Li J, Fu S, Ren P, Tang J, Wang N, Shi X, Wu J, Lin S (2019) Up-regulation of insulin-like growth factor binding protein-3 is associated with brain metastasis in lung adenocarcinoma. Mol Cell 42:321–332. https://doi.org/10.14348/molcells.2019.2441

    CAS  Article  Google Scholar 

  35. Chen CH, Chen PY, Lin YY, Feng LY, Chen SH, Chen CY, Huang YC, Huang CY, Jung SM, Chen LY, Wei KC (2020) Suppression of tumor growth via IGFBP3 depletion as a potential treatment in glioma. J Neurosurg 132:168–179. https://doi.org/10.3171/2018.8.JNS181217

    CAS  Article  Google Scholar 

  36. Kmiecik AM, Pula B, Suchanski J, Olbromski M, Gomulkiewicz A, Owczarek T, Kruczak A, Ambicka A, Rys J, Ugorski M, Podhorska-Okolow M, Dziegiel P (2015) Metallothionein-3 increases triple-negative breast cancer cell invasiveness via induction of metalloproteinase expression. PLoS One 10:e0124865. https://doi.org/10.1371/journal.pone.0124865

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Tsui KH, Hou CP, Chang KS, et al (2019) Metallothionein 3 is a hypoxia-upregulated oncogene enhancing cell invasion and tumorigenesis in human bladder carcinoma cells. Int J Mol Sci 20:. https://doi.org/10.3390/ijms20040980

  38. Giudici F, Petracci E, Nanni O, et al (2019) Elevated levels of eEF1A2 protein expression in triple negative breast cancer relate with poor prognosis. PLoS One 14:. https://doi.org/10.1371/journal.pone.0218030

  39. Worst TS, Waldbillig F, Abdelhadi A, Weis CA, Gottschalt M, Steidler A, von Hardenberg J, Michel MS, Erben P (2017) The EEF1A2 gene expression as risk predictor in localized prostate cancer. BMC Urol 17:86. https://doi.org/10.1186/s12894-017-0278-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Galmiche L, Serre V, Beinat M, Zossou R, Assouline Z, Lebre AS, Chretien F, Shenhav R, Zeharia A, Saada A, Vedrenne V, Boddaert N, de Lonlay P, Rio M, Munnich A, Rötig A (2012) Toward genotype phenotype correlations in GFM1 mutations. Mitochondrion 12:242–247. https://doi.org/10.1016/j.mito.2011.09.007

    CAS  Article  PubMed  Google Scholar 

  41. Sasako T, Ohsugi M, Kubota N, et al (2019) Hepatic Sdf2l1 controls feeding-induced ER stress and regulates metabolism. Nat Commun 10:. https://doi.org/10.1038/s41467-019-08591-6

  42. Fujimori T, Suno R, Iemura SI, Natsume T, Wada I, Hosokawa N (2017) Endoplasmic reticulum proteins SDF2 and SDF2L1 act as components of the BiP chaperone cycle to prevent protein aggregation. Genes Cells 22:684–698. https://doi.org/10.1111/gtc.12506

    CAS  Article  PubMed  Google Scholar 

  43. Tang R, Cui XB, Wang JN, Chen SY (2013) CTP synthase 1, a smooth muscle-sensitive therapeutic target for effective vascular repair. Arterioscler Thromb Vasc Biol 33:2336–2344. https://doi.org/10.1161/ATVBAHA.113.301561

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

The National Boron Research Institute (BOREN) financially supported this research with Grant No: Ç0391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Enes Arslan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Türkez, H., Arslan, M.E., Sönmez, E. et al. Safety Assessments of Nickel Boride Nanoparticles on the Human Pulmonary Alveolar Cells by Using Cell Viability and Gene Expression Analyses. Biol Trace Elem Res 199, 2602–2611 (2021). https://doi.org/10.1007/s12011-020-02374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02374-7

Keywords

  • Nickel boride nanoparticles
  • In vitro, gene expression
  • Human pulmonary alveolar epithelial cells
  • Pathway analysis