Skip to main content
Log in

The Role of Nrf2 on the Cognitive Dysfunction of High-fat Diet Mice Following Lead Exposure

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 07 December 2020

This article has been updated

Abstract

Lead (Pb) exposure can induce the severe deleterious damage on the central nervous system (CNS). High-fat diet also has been suggested that it had some adverse effects on learning and memory, cognitive function, but there is lack of study on Pb and high-fat diet co-exposure on the CNS damage. In this study, the goal was to explore the effect of Pb on the cognitive function of mice with high-fat diet and to investigate whether Nrf2 signaling pathway acts in the cerebral cortex. C57BL/6J mice were randomly divided into control, high-fat diet, Pb (drinking water with 250 mg/L lead acetate), and high-fat diet with Pb (drinking water with 250 mg/L lead acetate) co-exposure groups for 12 weeks. Experiment data showed that learn memory and exploration ability of mice obviously decreased in Pb and high-fat diet, and reactive oxygen species (ROS) increased; then, the protein expressions of Nrf2, heme oxygenase-1, NADP(H):dehydrogenase quinone 1, and superoxide dismutase 2 were lower significantly compared with those in the control group. This study suggested that down-expressed Nrf2 signaling pathway possibly related to the cognitive dysfunction induced by Pb and high-fat diet co-exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Emmanuel OG (2019) Sources of lead exposure in various countries. Rev Environ Health 34(1):25–34

    Google Scholar 

  2. Wang YY, Chen ZT, Wu Y. (2000) The investigation on lead content of children in Linchuan. Guangdong Science of trace elements, 7(10):30–34

  3. Meyer PA, Brown MJ, Falk H (2008) Global approach to reducing lead exposure and poisoning. Mutat Res 659(1–2):166–175

    CAS  PubMed  Google Scholar 

  4. Assi MA, Hezmee MN, Haron AW, Sabri MY, Rajion MA (2016) The detrimental effects of lead on human and animal health. Vet World 9(6):660–671

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma P, Chambial S, Shukla KK (2015) Lead and neurotoxicity. Indian J Clin Biochem 30(1):1–2

    PubMed  PubMed Central  Google Scholar 

  6. Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiodo LM, Jacobson SW, Jacobson JL (2004) Neurodevelopmental effects of postnatal lead exposure at very low levels. Neurotoxicol Teratol 26(3):359–371

    CAS  PubMed  Google Scholar 

  8. Chao H, Lu JC, Zhang KJ et al (2015) Study on neurobehavioral and memory of occupational lead workers. Occup Health 31(2):158–160

    CAS  Google Scholar 

  9. Verstraeten SV, Aimo L, Oteiza PI (2008) Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 82(11):789–802

    CAS  PubMed  Google Scholar 

  10. Ahmad F, Salahuddin M, Alsamman K, AlMulla AA, Salama KF (2018) Developmental lead (Pb)-induced deficits in hippocampal protein translation at the synapses are ameliorated by ascorbate supplementation. Neuropsychiatr Dis Treat 14:3289–3298

    CAS  PubMed  PubMed Central  Google Scholar 

  11. El-Sokkary GH, Kamel ES, Reiter RJ (2003) Prophylactic effect of melatonin in reducing lead-induced neurotoxicity in the rat. Cell Mol Biol Lett 8(2):461–470

    CAS  PubMed  Google Scholar 

  12. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24(16):7130–7139

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Itoh K, Wakabayashi N, Katoh Y, Ishii T, O'Connor T, Yamamoto M (2003) Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8(4):379–391

    CAS  PubMed  Google Scholar 

  14. Kobayashi M, Itoh K, Suzuki T, Osanai H, Nishikawa K, Katoh Y, Takagi Y, Yamamoto M (2002) Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. Genes Cells 7(8):807–820

    CAS  PubMed  Google Scholar 

  15. Zhang LJ, Yang JH, Jin CH, Wu SW, Lu X, Hu X, Sun Y, Cai Y (2017) The effect of Nrf2/ARE signaling pathway in the lanthanum chloride-induced impairment of learning and memory in rats. J Neurochem 140(3):463–475

    CAS  PubMed  Google Scholar 

  16. Zhang LJ, Yang JH, Wu SW, Jin CH, Lu X, Hu X, Sun Y, Gao X, Cai Y (2017) Activation of Nrf2/ARE signaling pathway attenuates lanthanum chloride induced injuries in primary rat astrocytes. Metallomics 9(8):1120–1131

    CAS  PubMed  Google Scholar 

  17. Maryam S, Ameneh R, Fariba K (2015) Hippocampal signaling pathways are involved in stress-induced impairment of memory formation in rats. Brain Res 1625:54–63

    Google Scholar 

  18. Katja K, Riikka H, Tarja M et al (2009) Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 106(38):16505–16510

    Google Scholar 

  19. Smaga I, Niedzielska E, Gawlik M, Moniczewski A, Krzek J, Przegaliński E, Pera J, Filip M (2015) Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol Rep 67(3):569–580

    CAS  PubMed  Google Scholar 

  20. Muramatsu H, Katsuoka F, Toide K, Shimizu Y, Furusako S, Yamamoto M (2013) Nrf2 deficiency leads to behavioral, neurochemical and transcriptional changes in mice. Genes Cells 18(10):899–908

    CAS  PubMed  Google Scholar 

  21. Niu Q, He SC, Li HY, Wang JY, Dai FY, Chen YL (2000) A comprehensive neurobehavioral and neurophysiological study for low level lead-exposed workers. G Ital Med Lav Ergon 22(4):299–304

    CAS  PubMed  Google Scholar 

  22. Puglielli L, Tanzi R, Kovacs D (2003) Alzheimer’s disease: the cholesterol connection. Nat Neurosci 6:345–351

    CAS  PubMed  Google Scholar 

  23. Taylor V, MacQueen G (2007) Cognitive dysfunction associated with metabolic syndrome. Obes Rev 8(5):409–418

    CAS  PubMed  Google Scholar 

  24. Gronning I, Scambler G, Tjora A (2013) From fatness to badness: the modern morality of obesity. Health 17(3):266–283

    PubMed  Google Scholar 

  25. Gong JF, Huang XY, Chen XX (2002) Experimental study on the distribution of lead in the organs of mice. J Xin Jiang Med Univ 25(1):29–31 (In Chinese)

    Google Scholar 

  26. He B, Wu L, Wei J et al (2017) Effects of lead and high-fat diet exposure on oxidative damage of cerebral cortex in rats. J Environ Health 34(5):386–390 (In Chinese)

    Google Scholar 

  27. Li C, Zhao K, Zhang H et al (2017) Lead exposure reduces sperm quality and DNA integrity in mice. Environ Toxicol 33(5):594–602

    Google Scholar 

  28. Wang JQ, Wu JH, Zhang ZM. (2006) Oxidative stress in mouse brain exposed to lead 50(4):405–409

  29. Wu L, He B, Wei J et al (2017) Effects of lead and high-fat diet exposure on learning memory and inflammatory factors of hippocampus in male mice. Chin Occup Med 44(2):148–152 (In Chinese)

    Google Scholar 

  30. Wu L (2017) Effects of lead and high fat diet exposure on inflammatory microenvironment of central nervous system. North China University of Science and Technology. (In Chinese)

  31. Liu SH, Zhang HM, Yang B (2016) Investigation of risk factors of lead exposure in workers with occupational lead exposure. Chin J Urban Rural Enterp Hyg 031(002):27–29 (In Chinese)

    Google Scholar 

  32. Miao C, Shao DC (2012) Study on risk factors of blood lead among occupational workers exposed to lead. Chin Prev Med 3:221–224 (In Chinese)

    Google Scholar 

  33. Wilson MA, Johnston MV, Goldstein GW, Blue ME (2000) Neonatal lead exposure impairs development of rodent barrel field cortex. Proc Natl Acad Sci U S A 97:5540–5545

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Xue L, Wu JH, Chen WW et al (2017) Ceruloplasmin and free copper might be a high potential biomarker in Pb induced neurotoxicity. Basic Clin Pharmacol Toxicol 121:1–7

    Google Scholar 

  35. Dutheil S, Ota KT, Wohleb ES, Rasmussen K, Duman RS (2016) High-fat diet induced anxiety and anhedonia: impact on brain homeostasis and inflammation. Neuropsychopharmacology 41(7):1874–1887

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Louise D, Neil BB, Claire C et al (2017) The relationship between obesity and cognitive health and decline. Proc Nutr Soc 76(4):443–454

    Google Scholar 

  37. Fukui K, Onodera K, Shinkai T et al (2011) Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci 928:168–175

    Google Scholar 

  38. Tang LM, Wang LX, Wang ZY et al (2017) Tanshinone IIA ameliorates lead (Pb)-induced cognitive deficits and oxidative stress in a rat pup model. BratislLekListy 118(4):196–201

    CAS  Google Scholar 

  39. Lopes AC, Peixe TS, Mesas AE, Paoliello MM (2016) Lead exposure and oxidative stress:a systematic review. Rev Environ Contam Toxicol 236:193–238

    PubMed  Google Scholar 

  40. Granholm AC, Bimonte-Nelson HA, Moore AB, Nelson ME, Freeman LR, Sambamurti K (2008) Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. J Alzheimers Dis 14:133–145

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Murray AJ, Knight NS, Cochlin LE, et al. (2009) Deterioration of physical performance and cognitive function in rats with short-term high-fat feeding. FASEBJ

  42. Johnson JB, Summer W, Cutler RG, Martin B, Hyun DH, Dixit VD, Pearson M, Nassar M, Tellejohan R, Maudsley S, Carlson O, John S, Laub DR, Mattson MP (2007) Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radical Biol Med 42:665–674

    CAS  Google Scholar 

  43. Butt UJ, Shah SAA, Ahmed T, Zahid S (2017) Protective effects of Nigella sativa L. seed extract on lead induced neurotoxicity during development and early life in mouse models. Toxicol Res 7(1):32–40

    Google Scholar 

  44. Mueller K, Sacher J, Arelin K, Holiga S, Kratzsch J, Villringer A, Schroeter ML (2012) Overweight and obesity are associated with neuronal injury in the human cerebellum and hippocampus in young adults: a combined MRI, serum marker and gene expression study. Transl Psychiatry 2:e200

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu A, Molteni R, Ying Z, Gomez-Pinilla F (2003) A saturated-fat diet aggravates the outcome of traumatic brain injury on hippocampal plasticity and cognitive function by reducing brain-derived neurotrophic factor. Neuroscience 119:365–375

    CAS  PubMed  Google Scholar 

  46. Wu A, Ying Z, Gomez-Pinilla F (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19:1699–1707

    PubMed  Google Scholar 

  47. Knapp LT, Klann E (2002) Role of reactive oxygen species in hippocampal longterm potentiation: contributory or inhibitory? J Neurosci Res 70:1–7

    CAS  PubMed  Google Scholar 

  48. Ilaiyaraja N, Khanum F (2011) Amelioration of alcohol-induced hepatotoxicity and oxidative stress in rats by acorus calamus. J Diet Suppl 8:331–345

    CAS  PubMed  Google Scholar 

  49. Sun Z-W, Zhang L, Zhu S-J, ChenW-C MB (2010) Excitotoxicity effects of glutamate on human neuroblastoma SH-SY5Y cells via oxidative damage. Neurosci Bull 26(1):8–16

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Abubakar K, Muhammad Mailafiya M, Danmaigoro A, Musa Chiroma S, Abdul Rahim EB, Abu Bakar @ Zakaria MZ (2019) Curcumin attenuates lead-induced cerebellar toxicity in rats via chelating activity and inhibition of oxidative stress. Biomolecules 9:453

    PubMed Central  Google Scholar 

  51. Chinta SJ, Kumar MJ, Hsu M et al (2007) Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J Neurosci 27:13997–14006

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Xia SF, Xie ZX, Qiao Y et al (2015) Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress. PhysiolBehav 138:325–331

    CAS  Google Scholar 

  53. Alzoubi KH, Khabour OF, Salah HA, Hasan Z (2013) Vitamin E prevents high-fat high-carbohydrates diet-induced memory impairment: the role of oxidative stress. PhysiolBehav 119:72–78

    CAS  Google Scholar 

  54. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima YI (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    CAS  PubMed  Google Scholar 

  55. Sajadimajd S, Khazaei M (2018) Oxidative stress and cancer: the role of Nrf2. Curr Cancer Drug Targets 18(6):538–557

    CAS  PubMed  Google Scholar 

  56. Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, Tamba M, Itoh K, Yamamoto M, Bannai S (2002) Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 277:44765–44771

    CAS  PubMed  Google Scholar 

  57. Hayashi A, Suzuki H, Itoh K, Yamamoto M, Sugiyama Y (2003) Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance associated protein1 in mouse embryo fibroblasts. Biochem Biophys Res Commun 310:824–829

    CAS  PubMed  Google Scholar 

  58. Chan K, Kan YW (1999) Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci U S A 96:12731–12736

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Enomoto A et al (2001) High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 59:169–177

    CAS  PubMed  Google Scholar 

  60. Ramos-Gomez M et al (2011) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci U S A 98:3410–3415

    Google Scholar 

  61. Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360(1):201–205

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gu Y, Dee CM, Shen J (2011) Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Front Biosci (Schol Ed) 3:1216–1231

    Google Scholar 

  63. Dhir A, Kulkarni SK (2011) Nitric oxide and major depression. Nitric Oxide 24:125–131

    CAS  PubMed  Google Scholar 

  64. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 35:676–692

    CAS  Google Scholar 

  65. Hirayama A, Yoh K, Nagase S, Ueda A, Itoh K, Morito N, Hirayama K, Takahashi S, Yamamoto M, Koyama A (2003) EPR imaging of reducing activity in Nrf2 transcription factor-deficient mice. Free Radic Biol Med 34:1236–1242

    CAS  PubMed  Google Scholar 

  66. Liu Z, Dou W, Ni Z, Wen Q, Zhang R, Qin M, Wang X, Tang H, Cao Y, Wang J, Zhao S (2016) Deletion of Nrf2 leads to hepatic insulin resistance via the activation of NF-κB in mice fed a high-fat diet. Mol Med Rep 14(2):1323–1331

    CAS  PubMed  Google Scholar 

  67. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14:123–130

    CAS  PubMed  Google Scholar 

  68. Ranjekar PK, Hinge A, Hegde MV, Ghate M, Kale A, Sitasawad S, Wagh UV, Debsikdar VB, Mahadik SP (2003) Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res 121:109–122

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (grant number: 81373208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanshu Zhang.

Ethics declarations

All experiments and surgical procedures complied with the National Institute of Health Guide for the Care and Use of Laboratory Animals.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Standards

The manuscript does not contain clinical studies or patient data.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Bo, J., Chen, W. et al. The Role of Nrf2 on the Cognitive Dysfunction of High-fat Diet Mice Following Lead Exposure. Biol Trace Elem Res 199, 2247–2258 (2021). https://doi.org/10.1007/s12011-020-02346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02346-x

Keywords

Navigation