Skip to main content

Advertisement

Log in

Biologically Active Substance Content in Edible Plants of Zakarpattia and Their Elemental Composition Model

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Consumption of edible plants satisfies a significant part of human body needs in macro- and micronutrients while biologically active substances contain strong antioxidant properties and reduce the risk of a number of diseases. Balanced nutrition and design of personalized diets and treatment rely on the data on the content of macro- and micronutrients and biologically active substances. We determined polyphenol and anthocyanin content in 22 species of local edible plants using modified spectrophotometric method with Folin–Ciocalteu reagent as well as chemical elements’ content in a mixture of edible plants from 13 regions using standard procedures. We performed correlational analysis of the obtained data and analysis of the main components in OriginLab, developed regional models of chemical elements’ content for a mixture of edible plants, and conducted cluster analysis using common tools in Python. The results of biologically active substances’ study demonstrated that the highest content of polyphenolic compounds and anthocyanins was found in grape meal of Vitis vinifera L. The study of chemical elements’ content demonstrated that edible plants from lowland areas are the best and revealed clear dependences of the elements on each other and geographical conditions. The analysis of the principal components confirmed this finding. Based on the obtained data, a number of regional models of chemical elements’ content in a mixture of edible plants were built, tested, and evaluated. Obtained results are the basis for designing various diets, filling composite databases of the region’s food, and creating the newest biologics—pharmabiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Frieden E (1974) The evolution of metals as essential elements [with special reference to iron and copper]. In: Protein-Metal Interactions. Springer, pp 1-31

  2. Organization WH (1996) Trace elements in human nutrition and health. World Health Organization

  3. Hanif R, Iqbalm Z, Iqbal M, Hanif S, Rasheed M (2006) Use of vegetables as nutritional food: role in human health. J Agric Biol Sci 1(1):18–22

    Google Scholar 

  4. Oguntibeju O, Truter E, Esterhuyse A (2013) The role of fruit and vegetable consumption in human health and disease prevention. Diabetes mellitus–insights and perspectives InTech Publishers:117-130

  5. Ülger TG, Songur AN, Çırak O, Çakıroğlu FP (2018) Role of vegetables in human nutrition and disease prevention. In: Vegetables-importance of quality vegetables to human health. IntechOpen Ltd. London, UK, pp 7-32

  6. Organization WH (2019) Sustainable healthy diets: guiding principles. Food & Agriculture Org

  7. Carter MC, Hancock N, Albar SA, Brown H, Greenwood DC, Hardie LJ, Frost GS, Wark PA, Cade JE (2016) Development of a new branded UK food composition database for an online dietary assessment tool. Nutrients 8(8). https://doi.org/10.3390/nu8080480

  8. Haytowitz DB, Pehrsson PR (2018) USDA’s National Food and Nutrient Analysis Program (NFNAP) produces high-quality data for USDA food composition databases: two decades of collaboration. Food Chem 238:134–138

    Article  CAS  Google Scholar 

  9. Moyer R, Hummer K, Wrolstad RE, Finn C (2001) Antioxidant compounds in diverse Ribes and Rubus germplasm. In: VIII International Rubus and Ribes Symposium 585. pp 501-505

  10. Perez-Gregorio R, Simal-Gandara J (2017) A critical review of bioactive food components, and of their functional mechanisms, biological effects and health outcomes. Curr Pharm Des 23(19):2731–2741

    Article  Google Scholar 

  11. Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54(3):325–341

    Article  CAS  Google Scholar 

  12. Correia RT, Borges KC, Medeiros MF, Genovese MI (2012) Bioactive compounds and phenolic-linked functionality of powdered tropical fruit residues. Food Sci Technol Int 18(6):539–547

    Article  Google Scholar 

  13. Bertini G, Gray H, Gray HB, Stiefel E, Valentine JS, Stiefel EI (2007) Biological inorganic chemistry: structure and reactivity. University Science Books

  14. Vázquez-León L, Páramo-Calderón D, Robles-Olvera V, Valdés-Rodríguez O, Pérez-Vázquez A, García-Alvarado M, Rodríguez-Jimenes G (2017) Variation in bioactive compounds and antiradical activity of Moringa oleifera leaves: influence of climatic factors, tree age, and soil parameters. Eur Food Res Technol 243(9):1593–1608

    Article  Google Scholar 

  15. Nigam M, Atanassova M, Mishra AP, Pezzani R, Devkota HP, Plygun S, Salehi B, Setzer WN, Sharifi-Rad J (2019) Bioactive compounds and health benefits of artemisia species. Nat Prod Commun 14(7):1934578X19850354

    CAS  Google Scholar 

  16. Hallmann E, Lipowski J, Marszałek K, Rembiałkowska E (2013) The seasonal variation in bioactive compounds content in juice from organic and non-organic tomatoes. Plant Foods Hum Nutr 68(2):171–176

    Article  CAS  Google Scholar 

  17. Petropoulos SA, Pereira C, Tzortzakis N, Barros L, Ferreira ICFR (2018) Nutritional value and bioactive compounds characterization of plant parts from Cynara cardunculus L. (Asteraceae) cultivated in Central Greece. Front Plant Sci 9. doi: https://doi.org/10.3389/fpls.2018.00459

  18. Cheng H, Chen J, Chen S, Wu D, Liu D, Ye X (2015) Characterization of aroma-active volatiles in three Chinese bayberry (Myrica rubra) cultivars using GC–MS–olfactometry and an electronic nose combined with principal component analysis. Food Res Int 72:8–15

    Article  CAS  Google Scholar 

  19. Sukharev S, Bugyna L, Pallah O, Sukhareva T, Drobnych V, Yerem K (2020) Screening of the microelements composition of drinking well water of Transcarpathian region, Ukraine. Heliyon 6(3):e03535. https://doi.org/10.1016/j.heliyon.2020.e03535

    Article  PubMed  PubMed Central  Google Scholar 

  20. Waterhouse AL (2002) Determination of total phenolics. Curr Protocol Food Anal Chem 6 (1):I1. 1.1-I1. 1.8

  21. Habánová M, Habán M, Kobidová R, Schwarzová M, Gažo J (2013) Analysis of biologically active substances in bilberry (Vaccinium myrtillus L.) in selected natural localities of Slovak Republic. J Cent Eur Agric 14 (3):0-0

  22. Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Smith D, Sporns P (2005) Handbook of food analytical chemistry: pigments, colorants, flavors, texture, and bioactive food components. John Wiley and Sons, Inc.

  23. Nielsen SS (2010) Food analysis. Springer. doi:https://doi.org/10.1007/978-3-319-45776-5

  24. Rudenko L, Bochkovska A, Kozachenko T, Parkhomenko G, Razov V, Liashenko D (2007) Natsionalnyi atlas Ukrainy (National atlas of Ukraine). DNVP “Kartografiya”, Kyyiv

  25. VanderPlas J (2016) Python data science handbook: essential tools for working with data. “O’Reilly Media, Inc.”

  26. Jolliffe IT (2002) Principal component analysis. Springer Series in Statistics, 2 edn. Springer-Verlag, New York. doi:https://doi.org/10.1007/b98835

  27. Stalikas CD (2010) Phenolic acids and flavonoids: occurrence and analytical methods. Methods Mol Biol 610:65–90. https://doi.org/10.1007/978-1-60327-029-8_5

    Article  CAS  PubMed  Google Scholar 

  28. Rocabado GO, Bedoya LM, Abad MJ, Bermejo P (2008) Rubus-a review of its phytochemical and pharmacological profile. Nat Prod Commun 3(3):1934578X0800300319

    Google Scholar 

  29. Zia-Ul-Haq M, Riaz M, De Feo V, Jaafar HZ, Moga M (2014) Rubus fruticosus L.: constituents, biological activities and health related uses. Molecules 19(8):10998–11029

    Article  Google Scholar 

  30. Grieve M, Leyel C (1984) A modern herbal: Penguin Harmondsworth

  31. Andrew C (1996) The encyclopedia of medicinal plants. A Dorling Kindersley Book

  32. Kendir G, Suntar I, Ceribasi AO, Koroglu A (2019) Activity evaluation on Ribes species, traditionally used to speed up healing of wounds: with special focus on Ribes nigrum. J Ethnopharmacol 237:141–148. https://doi.org/10.1016/j.jep.2019.03.038

    Article  PubMed  Google Scholar 

  33. Scherrer AM, Motti R, Weckerle CS (2005) Traditional plant use in the areas of monte vesole and ascea, cilento national park (Campania, Southern Italy). J Ethnopharmacol 97(1):129–143

    Article  Google Scholar 

  34. Chiej R (1984) Encyclopaedia of medicinal plants. MacDonald, Orbis

    Google Scholar 

  35. Bown D (1995) Encyclopaedia of herbs and their uses; Dorling Kindersley: London, UK. Google Scholar

  36. Blando F, Gerardi C, Nicoletti I (2004) Sour cherry (Prunus cerasus L) anthocyanins as ingredients for functional foods. J Biomed Biotechnol 2004(5):253–258. https://doi.org/10.1155/S1110724304404136

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ardid-Ruiz A, Harazin A, Barna L, Walter FR, Blade C, Suarez M, Deli MA, Aragones G (2020) The effects of Vitis vinifera L. phenolic compounds on a blood-brain barrier culture model: expression of leptin receptors and protection against cytokine-induced damage. J Ethnopharmacol 247:112253. https://doi.org/10.1016/j.jep.2019.112253

    Article  CAS  PubMed  Google Scholar 

  38. Helmstädter A, Schuster N (2010) Vaccinium myrtillus as an antidiabetic medicinal plant–research through the ages. Pharmazie 65(5):315–321

    PubMed  Google Scholar 

  39. Farzaei MH, Abbasabadi Z, Ardekani MRS, Rahimi R, Farzaei F (2013) Parsley: a review of ethnopharmacology, phytochemistry and biological activities. J Tradit Chin Med 33(6):815–826

    Article  Google Scholar 

  40. Oliveira AM, Nascimento MF, Ferreira MR, Moura DF, Souza TG, Silva GC, Ramos EH, Paiva PM, Medeiros PL, Silva TG, Soares LA, Chagas CA, Souza IA, Napoleao TH (2016) Evaluation of acute toxicity, genotoxicity and inhibitory effect on acute inflammation of an ethanol extract of Morus alba L. (Moraceae) in mice. J Ethnopharmacol 194:162–168. https://doi.org/10.1016/j.jep.2016.09.004

    Article  PubMed  Google Scholar 

  41. Butt MS, Nazir A, Sultan MT, Schroën K (2008) Morus alba L. nature’s functional tonic. Trends Food Sci Technol 19(10):505–512

    Article  CAS  Google Scholar 

  42. Mohammed FA, Elkady AI, Syed FQ, Mirza MB, Hakeem KR, Alkarim S (2018) Anethum graveolens (dill)–a medicinal herb induces apoptosis and cell cycle arrest in HepG2 cell line. J Ethnopharmacol 219:15–22

    Article  CAS  Google Scholar 

  43. Salehi B, Venditti A, Frezza C, Yücetepe A, Altuntaş Ü, Uluata S, Butnariu M, Sarac I, Shaheen S, Petropoulos SA (2019) Apium plants: beyond simple food and phytopharmacological applications. Appl Sci 9(17):3547

    Article  CAS  Google Scholar 

  44. Liu W, Nan G, Nisar MF, Wan C (2020) Chemical constituents and health benefits of four Chinese plum species. J Food Qual 2020:1–17

    CAS  Google Scholar 

  45. Stillo P, Icka P, Damo R (2018) Armoracia rusticana Gaertn., Mey. & Scherb. A neglected multiuseful species. BSHN (UT) 26:312–322

    Google Scholar 

  46. Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. Jama 296(10):1255–1265

    Article  CAS  Google Scholar 

  47. Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth W Jr, Swanson PD (2002) Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155(8):732–738

    Article  Google Scholar 

  48. Schroeter H, Spencer JP, Rice-Evans C, Williams RJ (2001) Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J 358(3):547–557

    Article  CAS  Google Scholar 

  49. Homych GP (2009) Plody dykorosloi’ syrovyny–dzherelo biologichno aktyvnyh rechovyn dlja harchovyh produktiv. Naukovi praci (Fruits of wild raw materials–a source of biologically active substances for foodstuff). Scientific works [Odessa National Academy of Food Technologies] (36 (2)):186-190

  50. Homych GP, Kaprel’janc LV, Zemelev SA (2011) Doslidzhennya flavonoyidiv v yahodakh chornytsi ta produktakh yiyi pererobky (Investigation of flavonoids in blueberry berries and products of its processing). Thematic collection of scientific works “Equipment and technologies of food production” 27:255-262

  51. Krivoruchko OV, Kotov AG, Samoilova VA, Kotova EE, Kovalyov VM (2018) The determination of content of anthocyanins and tannins In fruit of aronia melanocarpa. Med Clin Chem 0(1):71–75. https://doi.org/10.11603/mcch.2410-681X.2018.v0.i1.8756

    Article  CAS  Google Scholar 

  52. Azmir J, Zaidul I, Rahman M, Sharif K, Mohamed A, Sahena F, Jahurul M, Ghafoor K, Norulaini N, Omar A (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117(4):426–436

    Article  CAS  Google Scholar 

  53. Sasidharan S, Chen Y, Saravanan D, Sundram K, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8 (1)

  54. Yuronen YP, Yuronen E, Ivanov V, Kovalev I, Zelenkov P The concept of creation of information system for environmental monitoring based on modern GIS-technologies and earth remote sensing data. In: IOP Conference Series: Materials Science and Engineering, 2015. pp 012023-012023. doi:https://doi.org/10.1088/1757-899X/94/1/012023

  55. Drobnych VG, Pop SS, Peresoljak RV, Capulych OT, Karpjuk VM (2013) GIS ekologichnogo monitoryngu ta kompleksnogo analizu stanu navkolyshn’ogo pryrodnogo seredovyshha v Zakarpats’kij oblasti (GIS of ecological monitoring and complex analysis of environmental state in Transcarpathian region). Scientific Bulletin of Uzhgorod University: Series: Geography Land management Nature management 1:166-176

Download references

Funding

This work was supported by the Ministry of Education and Science of Ukraine, grant no. 0120U102244 personalized approaches to the diagnosis, prevention, and treatment of vascular diseases with prognostic modeling of individual atherosclerosis development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Rukavchuk.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meleshko, T., Rukavchuk, R., Buhyna, L. et al. Biologically Active Substance Content in Edible Plants of Zakarpattia and Their Elemental Composition Model. Biol Trace Elem Res 199, 2387–2398 (2021). https://doi.org/10.1007/s12011-020-02345-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02345-y

Keywords

Navigation