Skip to main content

Advertisement

Log in

Intravenous Administration of Butaphosphan and Cyanocobalamin Combination to Late-Pregnant Dairy Cows Reduces Their Insulin Resistance After Calving

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Dairy cows suffer insulin resistance following parturition and lactogenesis. Several researchers attempted to reduce insulin resistance via dietary and parenteral supplementations of different substances to promote metabolic performance of dairy cows. Due to mechanisms of actions of butaphosphan in combination with cyanocobalamin, we hypothesized that this compound may reduce insulin resistance of dairy cows following parturition; hence, the effects of the intravenous administration of butaphosphan and cyanocobalamin to prepartum dairy cows on their insulin resistance after calving were evaluated. Twenty-four multiparous Holstein dairy cows were enrolled 3 weeks prior to parturition and divided into four equal groups, including control (Ctrl) and butaphosphan and cyanocobalamin (B+C) 1, 2, and 3. Ctrl cows received 15 mL of 0.9% NaCl solution and B+C 1, 2, and 3 groups intravenously received 2, 4, and 6 mL/100 kg BW of 10% butaphosphan and 0.005% cyanocobalamin combination over three periods of 3 consecutive days, including 21-19, 12-10, and 3-1 days before calving, respectively. Intravenous glucose tolerance test was performed weekly 1, 2, and 3 weeks after parturition to evaluate the insulin resistance phenomenon. Circulating levels of glucose, insulin, non-esterified fatty acids (NEFA), and beta-hydroxybutyric acid (BHBA) were assessed 1, 2, and 3 weeks after calving. Ctrl cows were the most insulin-resistant group, and B+C1 group was the most insulin-sensitive, followed by B+C2 and B+C3 groups. The NEFA and BHBA levels in the B+C3 group were significantly lower than those in the other groups. In conclusion, intravenous administration of butaphosphan and cyanocobalamin to the late-pregnant dairy cows may reduce their insulin resistance after calving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Patton J, Kenny DA, Mcnamara S, Mee JF, O’Mara FP, Diskin MG, Murphy JJ (2007) Relationships among milk production, energy balance, plasma analytes, and reproduction in holstein-friesian cows. J Dairy Sci 90:649–658. https://doi.org/10.3168/jds.S0022-0302(07)71547-3

    Article  CAS  PubMed  Google Scholar 

  2. Castaneda-Gutierrez E, Pelton SH, Gilbert RO, Butler WR (2009) Effect of peripartum dietary energy supplementation of dairy cows on metabolites, liver function and reproductive variables. Anim Reprod Sci 112:301–315. https://doi.org/10.1016/j.anireprosci.2008.04.028

    Article  CAS  PubMed  Google Scholar 

  3. Mattmiller SA, Corl CM, Gandy JC, Loor JJ, Sordillo LM (2011) Glucose transporter and hypoxiaassociated gene expression in the mammary gland of transition dairy cattle. J Dairy Sci 94:2912–2922. https://doi.org/10.3168/jds.2010-3936

    Article  CAS  PubMed  Google Scholar 

  4. Chagas LM, Lucy MC, Back PJ, Blache D, Lee JM, Gore PJ, Sheahan AJ, Roche JR (2009) Insulin resistance in divergent strains of holstein-friesian dairy cows offered fresh pasture and increasing amounts of concentrate in early lactation. J Dairy Sci 92:216–222. https://doi.org/10.3168/jds.2008-1329

    Article  CAS  PubMed  Google Scholar 

  5. Zhang ZG, Wang JG, Gao RF, Zhang W, Li X, Liu G, Li X, Wang Z, Zhu X (2013) High-energy diet at antepartum decreases insulin receptor gene expression in adipose tissue of postpartum dairy cows. Bull Vet Inst Pulawy 57:203–207. https://doi.org/10.2478/bvip-2013-0037

    Article  CAS  Google Scholar 

  6. Tsuruzoe K, Emkey R, Kriauciunas KM, Ueki K, Kahn CR (2001) Insulin receptor substrate 3 (IRS-3) and IRS-4 impair IRS-1- and IRS-2-mediated signaling. J Mol Cell Biol 21:26–38. https://doi.org/10.1128/MCB.21.1.26-38.2001

    Article  CAS  Google Scholar 

  7. Ning J, Hong T, Yang X, Mei S, Liu Z, Liu H, Cao W (2011) Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse. Am J Physiol Endocrinol Metab 301:391–401. https://doi.org/10.1152/ajpendo.00164.2011

    Article  CAS  Google Scholar 

  8. Esposito G, Irons PC, Webb EC, Chapwanya A (2014) Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim Reprod Sci 144:60–71. https://doi.org/10.1016/j.anireprosci.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  9. Overton TR, Waldron MR (2004) Nutritional management of transition dairy cows: strategies to optimize metabolic health. J Dairy Sci 87:105–119. https://doi.org/10.3168/jds.S0022-0302(04)70066-1

    Article  Google Scholar 

  10. Chibisa GE, Gozho GN, Van Kessel AG, Olkowski AA, Mutsvangwa T (2008) Effects of peripartum propylene glycol supplementation on nitrogen metabolism, body composition, and gene expression for the major protein degradation pathways in skeletal muscle in dairy cows. J Dairy Sci 91:3512–3527. https://doi.org/10.3168/jds.2007-0920

    Article  CAS  PubMed  Google Scholar 

  11. Chalmeh A, Hajimohammadi A, Nazifi S (2015) Endocrine and metabolic responses of high producing Holstein dairy cows to glucose tolerance test based on the stage of lactation. Livest Sci 181:179–186. https://doi.org/10.1016/j.livsci.2015.09.014

    Article  Google Scholar 

  12. Kreipe L, Deniz A, Bruckmaier RM, Van Dorland HA (2011) First report about the mode of action of combined butafosfan and cyanocobalamin on hepatic metabolism in nonketotic early lactating cows. J Dairy Sci 94:4904–4914. https://doi.org/10.3168/jds.2010-4080

    Article  CAS  PubMed  Google Scholar 

  13. Pereira RA, Silveira PAS, Montagner P, Schneider A, Schmitt E, Rabassa VR, Pfeifer LF, Del Pino FA, Pulga ME, Corrêa MN (2013) Effect of butaphosphan and cyanocobalamin on postpartum metabolism and milk production in dairy cows. Animal 7:1143–1147. https://doi.org/10.1017/S1751731113000013

    Article  CAS  PubMed  Google Scholar 

  14. Furll M, Deniz A, Westphal B, Illing C, Constable PD (2010) Effect of multiple intravenous injections of butaphosphan and cyanocobalamin on the metabolism of periparturient dairy cows. J Dairy Sci 93:4155–4164. https://doi.org/10.3168/jds.2009-2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rollin E, Berghaus RD, Rapnicki P, Godden SM, Overton MW (2010) The effect of injectable butaphosphan and cyanocobalamin on postpartum serum beta-hydroxybutyrate, calcium, and phosphorus concentrations in dairy cattle. J Dairy Sci 93:978–987. https://doi.org/10.3168/jds.2009-2508

    Article  CAS  PubMed  Google Scholar 

  16. Kincaid RL, Socha MT (2007) Effect of cobalt supplementation during late gestation and early lactation on milk and serum measures. J Dairy Sci 90:1880–1886. https://doi.org/10.3168/jds.2006-296

    Article  CAS  PubMed  Google Scholar 

  17. Kennedy DG, Cannavan A, Molloy A, O’Harte F, Taylor SM, Kennedy S, Blanchflower WJ (1990) Methylmalonyl-CoA mutase (EC 5.4.99.2) and methionine synthetase (EC 2.1.1.13) in the tissues of cobalt-vitamin 12 deficient sheep. Br J Nutr 64:721–732. https://doi.org/10.1079/bjn19900074

    Article  CAS  PubMed  Google Scholar 

  18. Preynat A, Lapierre H, Thivierge MC, Palin MF, Matte JJ, Desrochers A, Girard CL (2009) Effects of supplements of folic acid, vitamin B12, and rumen-protected methionine on whole body metabolism of methionine and glucose in lactating dairy cows. J Dairy Sci 92:677–689. https://doi.org/10.3168/jds.2008-1525

    Article  CAS  PubMed  Google Scholar 

  19. Girard CL, Matte JJ (2005) Effects of intramuscular injections of vitamin B12 on lactation performance of dairy cows fed dietary supplements of folic acid and rumen-protected methionine. J Dairy Sci 88:671–676. https://doi.org/10.3168/jds.S0022-0302(05)72731-4

    Article  CAS  PubMed  Google Scholar 

  20. Akins MS, Bertics SJ, Socha MT, Shaver RD (2013) Effects of cobalt supplementation and vitamin B(12) injections on lactation performance and metabolism of Holstein dairy cows. J Dairy Sci 96:1755–1768. https://doi.org/10.3168/jds.2012-5979

    Article  CAS  PubMed  Google Scholar 

  21. Klopcic M, Hamoen A, Bewley J (2011) Body condition scoring of dairy cows. University of Ljubljana, Ljubljana

    Google Scholar 

  22. Itle AJ, Huzzey JM, Weary DM, von Keyserlingk MA (2015) Clinical ketosis and standing behavior in transition cows. J Dairy Sci 98:128–134. https://doi.org/10.3168/jds.2014-7932

    Article  CAS  PubMed  Google Scholar 

  23. De Koster JD, Opsomer G (2013) Insulin resistance in dairy cows. Vet Clin North Am Food Anim Pract 29:299–322. https://doi.org/10.1016/j.cvfa.2013.04.002

    Article  PubMed  Google Scholar 

  24. González-Grajales LA, Pieper L, Mengel S, Staufenbiel R (2018) Evaluation of glucose dose on intravenous glucose tolerance test traits in Holstein-Friesian heifers. J Dairy Sci 101:774–782. https://doi.org/10.3168/jds.2017-13215

    Article  CAS  PubMed  Google Scholar 

  25. Beever DE (2006) The impact of controlled nutrition during the dry period on dairy cow health, fertility and performance. Anim Reprod Sci 96:212–226. https://doi.org/10.1016/j.anireprosci.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  26. Grundy SM, Abate N, Chandalia M (2002) Diet composition and the metabolic syndrome: what is the optimal fat intake? Am J Med Sci 30:25S–29S. https://doi.org/10.1016/s0002-9343(01)00988-3

    Article  Google Scholar 

  27. Diamant M, Blaak EE, de Vos WM (2011) Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev 12:272–281. https://doi.org/10.1111/j.1467-789X.2010.00797.x

    Article  CAS  PubMed  Google Scholar 

  28. Chalmeh A, Pourjafar M, Badiei K, Jalali M, Mazrouei Sebdani M (2020) The comparative effects of dietary monensin and propylene glycol on insulin resistance of transition dairy cows. Trop Anim Health Prod; In Press 52:1573–1582. https://doi.org/10.1007/s11250-019-02160-1

    Article  PubMed  Google Scholar 

  29. Weaver SR, Prichard AS, Maerz NL, Prichard AP, Endres EL, Hernández-Castellano LE, Akins MS, Bruckmaier RM, Hernandez LLL (2017) Elevating serotonin pre-partum alters the Holstein dairy cow hepatic adaptation to lactation. PLoS One 12:e0184939. https://doi.org/10.1371/journal.pone.0184939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nuber U, van Dorland HA, Bruckmaier RM (2016) Effects of butafosfan with and without cyanocobalamin on the metabolism of early lactating cows with subclinical ketosis. Am J Physiol Endocrinol Metab 100:146–155. https://doi.org/10.1111/jpn.12332

    Article  CAS  Google Scholar 

  31. Hayirli A (2006) The role of exogenous insulin in the complex of hepatic lipidosis and ketosis associated with insulin resistance phenomenon in postpartum dairy cattle. Vet Res Commun 30:749–774. https://doi.org/10.1007/s11259-006-3320-6

    Article  CAS  PubMed  Google Scholar 

  32. Berg JM, Tymoczko JL, Stryer L (2006) Glycolysis and gluconeogenesis. In: Berg JM, Tymoczko JL, Stryer L (eds) Biochemistry, 6th edn. W. H. Freeman and Co, New York, pp 433–474

    Google Scholar 

  33. Girard CL, Lapierre H, Matte JJ, Lobley GE (2005) Effects of dietary supplements of folic acid and rumen protected methionine on lactational performance and folate metabolism of dairy cows. J Dairy Sci 88:660–670. https://doi.org/10.3168/jds.S0022-0302(05)72730-2

    Article  CAS  PubMed  Google Scholar 

  34. Graulet B, Matte JJ, Desrochers A, Doepel L, Palin MF, Girard CL (2007) Effects of dietary supplements of folic acid and vitamin B12 on metabolism of dairy cows in early lactation. J Dairy Sci 90:3442–3455. https://doi.org/10.3168/jds.2006-718

    Article  CAS  PubMed  Google Scholar 

  35. Girard CL, Matte JJ (2005) Folic acid and vitamin B12 requirements of dairy cows: a concept to be revised. Livest Prod Sci 98:123–133. https://doi.org/10.1016/j.livprodsci.2005.10.009

    Article  Google Scholar 

  36. Kennedy DG, Young PB, Blanchflower WJ, Scott JM, Weir DG, Molloy AM, Kennedy S (1994) Cobalt-vitamin B12 deficiency causes lipid accumulation, lipid peroxidation and decreased α-tocopherol concentrations in the liver of sheep. Int J Vitam Nutr Res 64:270–276

    CAS  PubMed  Google Scholar 

  37. Longo N, Frigeni M, Pasquali M (2016) Carnitine transport and fatty acid oxidation. Biochim Biophys Acta 1863:2422–2435. https://doi.org/10.1016/j.bbamcr.2016.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takahashi-Iñiguez T, García-Hernandez E, Arreguín-Espinosa R, Flores ME (2012) Role of vitamin B12 on methylmalonyl-CoA mutase activity. J Zhejiang Univ Sci B 13:423–437. https://doi.org/10.1631/jzus.B1100329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Girard CL, Matte JJ (1999) Changes in serum concentrations of folates, pyridoxal, pyridoxal-5-phosphate and vitamin B12 during lactation of dairy cows fed dietary supplements of folic acid. Can J Anim Sci 79:107–113. https://doi.org/10.4141/A98-016

    Article  CAS  Google Scholar 

  40. McDowell LR (2000) Vitamins in animal and human nutrition, 2nd edn. Iowa State University Press, Ames

    Book  Google Scholar 

  41. Stangl GI, Schwarz FJ, Müller H, Kirchgessner M (2000) Evaluation of the cobalt requirement of beef cattle based on vitamin B12, folate, homocysteine and methylmalonic acid. Br J Nutr 84:645–653. https://doi.org/10.1017/s0007114500001987

    Article  CAS  PubMed  Google Scholar 

  42. Kincaid RL, Lefebvre LE, Cronrath JD, Socha MT, Johnson AB (2003) Effect of dietary cobalt supplementation on cobalt metabolism and performance of dairy cattle. J Dairy Sci 86:1405–1414. https://doi.org/10.3168/jds.S0022-0302(03)73724-2

    Article  CAS  PubMed  Google Scholar 

  43. Tiffany ME, Fellner V, Spears JW (2006) Influence of cobalt concentrations on vitamin B12 production and fermentation of mixed microorganisms grown in continuous culture flow-through fermentors. J Anim Sci 84:635–640. https://doi.org/10.2527/2006.843635x

    Article  CAS  PubMed  Google Scholar 

  44. Fiore E, Gianesella M, Arfuso F, Giudice E, Piccione G, Lora M, Stefani A, Morgante M (2014) Glucose infusion response on some metabolic parameters in dairy cows during transition period. Arch Tierzucht 57:1–9. https://doi.org/10.7482/0003-9438-57-003

    Article  CAS  Google Scholar 

  45. Terao H, Fujita M, Tsumagari A, Suginob T, Bungo T (2010) Insulin dynamics in transition dairy cows as revealed by intravenous glucose tolerance testing. J Anim Vet Adv 9:2333–2337. https://doi.org/10.3923/javaa.2010.2333.2337

    Article  CAS  Google Scholar 

  46. Gordon JL, Duffield TF, Herdt TH, Kelton DF, Neuder L, LeBlanc SJ (2017) Effects of a combination butaphosphan and cyanocobalamin product and insulin on ketosis resolution and milk production. J Dairy Sci 100:2954–2966. https://doi.org/10.3168/jds.2016-11925

    Article  CAS  PubMed  Google Scholar 

  47. Temizel EM, Batmaz H, Keskin A, Orman A, Gencoglu H, Catık S, Topal O (2015) Butaphosphan and cyanocobalamin treatment of pregnant ewes: metabolic effects and potential prophylactic effect for pregnancy toxaemia. Small Rumin Res 125:163–172. https://doi.org/10.1016/j.smallrumres.2015.02.016

    Article  Google Scholar 

  48. Tabeleão VC, Schwegler E, Pereira RA, Krause ART, Montagner P, Feijó JO, Schneider A, Schmitt E, Brauner CC, Rabassa VR, Pino FD, Corrêa MN (2017) Combined of butaphosphan and cyanocobalamin on the glucose metabolism of dairy cows after calving. Arq Bras Med Vet Zootec 69:317–324. https://doi.org/10.1590/1678-4162-8453

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Javad Chalmeh for providing the cows.

Funding

The authors received financial support from Shiraz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasghar Chalmeh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalmeh, A., Pourjafar, M., Badiei, K. et al. Intravenous Administration of Butaphosphan and Cyanocobalamin Combination to Late-Pregnant Dairy Cows Reduces Their Insulin Resistance After Calving. Biol Trace Elem Res 199, 2191–2200 (2021). https://doi.org/10.1007/s12011-020-02330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02330-5

Keywords

Navigation