Skip to main content
Log in

Zinc Supplementation and Strength Exercise in Rats with Type 2 Diabetes: Akt and PTP1B Phosphorylation in Nonalcoholic Fatty Liver

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2D) is a metabolic disorder caused by chronic hyperglycemia due to a deficiency in the secretion and/or action of insulin. Zinc (Zn) supplementation and strength exercise increases insulin signaling. We evaluate the effect of Zn supplementation and strength exercise on insulin resistance in the liver of rats with diet-induced T2D through the study of phosphorylation of Akt and protein tyrosine phosphatase 1B (PTP1B). Rats were fed with a high-fat diet (HFD) for 18 weeks to induce T2D and then assigned in four experimental groups: HFD, HFD-Zn (Zn), HFD-strength exercise (Ex), and HFD-Zn/strength exercise (ZnEx) and treated during 12 weeks. Serum Zn, lipid profile, transaminases, glucose, and insulin were measured. In the liver with/without insulin stimuli, total and phosphorylated Akt (pAktSer473) and PTP1B (pPTP1BSer50) were determined by western blot. Hepatic steatosis was evaluated by histological staining with red oil and intrahepatic triglyceride (IHTG) content. There were no differences in biochemical and body-related variables. The ZnEx group showed a higher level of pAkt, both with/without insulin. The ZnEx group also showed higher levels of pPTP1B with respect to HFD and Zn groups. The ZnEx group had higher levels of pPTP1B than groups treated with insulin. Liver histology showed a better integrity and less IHTG in Ex and ZnEx with respect to the HFD group. The Ex and ZnEx groups had lower IHTG with respect to the HFD group. Our results showed that Zn supplementation and strength exercise together improved insulin signaling and attenuated nonalcoholic liver disease in a T2D rat model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kharroubi AT, Darwish H (2015) Diabetes mellitus: the epidemic of the century. World J Diabetes 6(6):850–867

    PubMed  PubMed Central  Google Scholar 

  2. Olokoba AB, Obateru O, Olokoba LB (2012) Type 2 diabetes mellitus: a review of current trends. Oman Med J 27(4):269–273

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fu Z, Gilbert E, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 9(1):25–53

    PubMed  PubMed Central  Google Scholar 

  4. Williamson RM, Price JF, Glancy S, Perry E, Nee LD, Hayes PC, Frier BM, Van Look LA, Johnston GI, Reynolds RM, Strachan MW (2011) Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes Care 34(5):1139–1144

    PubMed  PubMed Central  Google Scholar 

  5. Nabavi SF, Bilotto S, Russo GL, Orhan IE, Habtemariam S, Daglia M, Devi KP, Loizzo MR, Tundis R, Nabavi SM (2016) Non-alcoholic fatty liver disease and diabetes. Metabolism 65(8):1096–1108

    Google Scholar 

  6. Sunny NE, Parks E, Browning JD, Burgess SC (2011) Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 14:804–810

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Manco M (2017) Insulin resistance and NAFLD: a dangerous liaison beyond the genetics. Children (Basel) 4(8):74

    Google Scholar 

  8. Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of nonalcoholic fatty liver disease (NAFLD). Metabolism 65:1038–1044

    CAS  PubMed  Google Scholar 

  9. Gurzov EN, Tran M, Fernandez-Rojo MA, Merry TL, Zhang X, Xu Y, Fukushima A, Waters MJ, Watt MJ, Andrikopoulos S, Neel BG, Tiganis T (2014) Hepatic oxidative stress promotes insulin-STAT-5 signaling and obesity by inactivating protein tyrosine phosphatase N2. Cell Metab 20(1):85–102

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Maret W (2013) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4:82–91

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Li YV (2014) Zinc and insulin in pancreatic beta-cells. Endocrine 45(2):178–189

    CAS  PubMed  Google Scholar 

  12. Ranasinghe P, Pigera S, Galappatthy P, Katulanda P, Constantine GR (2015) Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. Daru 23:44

    PubMed  PubMed Central  Google Scholar 

  13. Bellomo E, Birla-Singh K, Massarotti A, Hogstrand C, Maret W (2016) The metal face of protein tyrosine phosphatase 1B. Coord Chem Rev 327-328:70–83

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bakke J, Haj FG (2015) Protein-tyrosine phosphatase 1B substrates and metabolic regulation. Seminars in Cell & Develop Biol 37:58.65. https://doi.org/10.1016/j.semcdb.2014.09.020

    Article  CAS  Google Scholar 

  15. Bellomo E, Masarotti A, Hogstrand C, Maret W (2014) Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics 6:1229–1239

    CAS  PubMed  Google Scholar 

  16. Parsons ZD, Gates KS (2013) Thiol dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases. Biochemistry 52:6412–6423

    CAS  PubMed  Google Scholar 

  17. Shi K, Egawa K, Maegawa H, Nakamura T, Ugi S, Nishio Y, Kashiwagi A (2004) Protein-tyrosine phosphatase 1B associates with insulin receptor and negatively regulates insulin signaling without receptor internalization. J Biochem 136:89–96

    CAS  PubMed  Google Scholar 

  18. González-Rodríguez A, Mas-Gutiérrez J, Sanz-González S, Ros M, Burks DJ, Valverde AM (2010) Inhibition of PTP1B restores IRS1-mediated hepatic insulin signaling in IRS2-deficient mice. Diabetes 59:588–599

    PubMed  Google Scholar 

  19. Feldhammer M, Uetani N, Miranda-Saavedra D, Tremblay ML (2013) PTP1B: a simple enzyme for a complex world. Crit Rev Biochem Mol Biol 48(5):430–445. https://doi.org/10.3109/10409238.2013.819830

    Article  CAS  PubMed  Google Scholar 

  20. Buckley DA, Cheng A, Kiely PA, Tremblay ML, O’Connor R (2002) Regulation of insulin-like growth factor type I (IGF-I) receptor kinase activity by protein tyrosine phosphatase 1B (PTP-1B) and enhanced IGF-I-mediated suppression of apoptosis and motility in PTP-1B-deficient fibroblasts. Mol Cell Biol 22:1998–1910

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhakta HK, Paudel P, Fujii H, Sato A, Park CH, Yokozawa T, Jung HA, Choi JS (2017) Oligonol promotes glucose uptake by modulating the insulin signaling pathway in insulin-resistant HepG2 cells via inhibiting protein tyrosine phosphatase 1B. Arch Pharm Res 40(11):1314–1327

    CAS  PubMed  Google Scholar 

  22. Ravichandran LV, Chen H, Li Y, Quon MJ (2001) Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Mol Endocrinol 15:1768–1780

    CAS  PubMed  Google Scholar 

  23. Kido K, Ato S, Yokokawa T, Makanae Y, Sato K, Fujita S (2016) Acute resistance exercise-induced IGF1 expression and subsequent GLUT4 translocation. Physiol Rep 4(16).

  24. Pesta DH, Goncalves R, Madiraju AK, Strasser B, Sparks LM (2017) Resistance training to improve type 2 diabetes: working toward a prescription for the future. Nutr Metab (Lond) 14:24

    Google Scholar 

  25. Camera DM, Edge J, Short MJ, Hawley JA, Coffey VG (2010) Early time course of Akt phosphorylation after endurance and resistance exercise. Med Sci Sports Exerc 42(10):1843–1852

    CAS  PubMed  Google Scholar 

  26. Li M, Li W, Yoon J-H, Jeon BH, Lee SK (2015) Resistance exercise training increase activation of AKT-eNOS and Ref-1 expression by FOXO-1 activation in aorta of F344 rats. J Exerc Nutr Biochem 19(3):165–171

    Google Scholar 

  27. Marinho R, Mekary R, Muñoz VR, Gomes RJ, Pauli JR, de Moura LP (2015) Regulation of hepatic TRB3/Akt interaction induced by physical exercise and its effect on the hepatic glucose production in an insulin resistance state. Diabetol Metab Syndr 7:67

    PubMed  PubMed Central  Google Scholar 

  28. Zelber-Sagi S, Bush A, Yeshua H, Vaisman N, Webb M, Harari G, Kis O, Fliss-Isakov N, Izkhakov E, Halpern Z, Santo E, Oren R, Shibolet O (2014) Effect of resistance training on non-alcoholic fatty-liver disease a randomized-clinical trial. World J Gastroenterol 20(15):4382–4392

    PubMed  PubMed Central  Google Scholar 

  29. Hashida R, Kawaguchi T, Bekki M, Omoto M, Matsuse H, Nago T, Takano Y, Ueno T, Koga H, George J, Shiba N, Torimura T (2017) Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. J Hepatol 66(1):142–152

    PubMed  Google Scholar 

  30. Wang Y, Wang P, Qin LQ, Davaasambuu G, Kaneko T, Xu J, Murata S, Katoh R, Sato A (2003) The development of diabetes mellitus in Wistar rats kept on a high-fat/low carbohydrate diet for long periods. Endocrine 22:85–92

    PubMed  Google Scholar 

  31. Brøns C, Jensen CB, Storgaard H, Hiscock NJ, White A, Appel JS, Jacobsen S, Nilsson E, Larsen CM, Astrup A, Quistorff B, Vaag A (2009) Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men. J Physiol 587(Pt 10):2387–2397

    PubMed  PubMed Central  Google Scholar 

  32. Skovso S (2014) Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Invest 5(4):349–358

    CAS  Google Scholar 

  33. Tubbs E, Chanon S, Robert M, Bendridi N, Bidaux G, Chauvin M et al (2018) Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans. Diabetes 67(4):636–650. https://doi.org/10.2337/db17-0316

    Article  CAS  PubMed  Google Scholar 

  34. Arias EB, Zheng X, Agrawal S, Cartee GD (2019) Whole body glucoregulation and tissue-specific glucose uptake in a novel Akt substrate of 160 kDa knockout rat model. PloS One 14(4):e0216236. https://doi.org/10.1371/journal.pone.0216236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Konishi M, Sakaguchi M, Lockhart SM, Cai W, Li ME, Homan EP, Rask-Madsen C, Kahn CR (2017) Endothelial insulin receptors differentially control insulin signaling kinetics in peripheral tissues and brain of mice. PNAS USA 114(40):E8478–E8487. https://doi.org/10.1073/pnas.1710625114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Katsoulieris EN, Drossopoulou GI, Kotsopoulou ES, Vlahakos DV, Lianos EA, Tsilibary EC (2016) High glucose impairs insulin signaling in the glomerulus: an in vitro and ex vivo approach. PloS One 11(7):e0158873. https://doi.org/10.1371/journal.pone.0158873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin Phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  38. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    CAS  PubMed  Google Scholar 

  39. Barthel A, Ostrakhovitch E, Walter PL, Kampkötter A, Klotz LO (2007) Stimulation of phosphoinositide 3-kinase/Akt signaling by copper and zinc ions: mechanisms and consequences. Arch Biochem Biophys 463:175–182

    CAS  PubMed  Google Scholar 

  40. Lee S, Chanoit G, McIntosh R, Zvara DA, Xu Z (2009) Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. Am J Physiol Heart Circ Physiol 297:569–575

    Google Scholar 

  41. Ugi S, Imamura T, Maegawa H, Egawa K, Yoshizaki A, Shi K et al (2004) Protein phosphatase 2A negativaly regulates insulin’s metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3 T3-L1 adipocye. Mol Cell Biol 25:8778–8789

    Google Scholar 

  42. Xiong Y, Luo DJ, Wang XL, Qiu M, Yang Y, Yan X, Wang JZ, Ye QF, Liu R (2015) Zinc binds to and directly inhibits protein phosphatase 2A in vitro. Neurosci Bull 31:331–337

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth. autophagy and metabolism. Nat Cell Biol 13(9):1016–1023

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wieringa FT, Dijkhuizen MA, Fiorentino M, Laillou A, Berger J (2015) Determination of zinc status in humans: which indicator should we use? Nutrients 7(5):3252–3263

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci. 18(2):144–157

    PubMed  PubMed Central  Google Scholar 

  46. Wei CC, Luo Z, Hogstrand C, Xu YH, Wu LX, Chen GH, Pan YX, Song YF (2018) Zinc reduces hepatic lipid deposition and activates lipophagy via Zn2+/MTF-1/PPARα and Ca2+/CaMKKβ/ AMPK pathways. FASEB J Jun 28:fj201800463.

  47. Wu Y, Lu H, Yang H, Li C, Sang Q, Liu X, Liu Y, Wang Y, Sun Z (2016) Zinc stimulates glucose consumption by modulating the insulin signaling pathway in L6 myotubes: essential roles of Akt-GLUT4, GSK3β and mTOR-S6K1. J Nutr Biochem 34:126–135. https://doi.org/10.1016/j.jnutbio.2016.05.008

    Article  CAS  PubMed  Google Scholar 

  48. Bellomo E, Abro A, Hogstrand C, Maret W, Domene C (2018) Role of zinc and magnesium ions in the modulation of phosphoryl transfer in protein tyrosine phosphatase 1B. J Am Chem Soc 140(12):4446–4454

    CAS  PubMed  Google Scholar 

  49. Shidfar F, Faghihi A, Amiri HL, Mousavi SN (2016) Regression of nonalcoholic fatty liver disease with zinc and selenium co-supplementation after disease progression in rats. Iran J Med Sci 43(1):26–31

    Google Scholar 

  50. Himoto T, Masaki T (2018) Associations between zinc deficiency and metabolic abnormalities in patients with chronic liver disease. Nutrients 10(1):E88

    PubMed  Google Scholar 

  51. van der Windt DJ, Sud V, Zhang H, Tsung A, Huang H (2018) The effects of physical exercise on fatty liver disease. Gene Expr 18(2):89–101

    PubMed  PubMed Central  Google Scholar 

  52. Hallsworth K, Fattakhova G, Hollingsworth KG, Thoma C, Moore S, Taylor R, Day CP, Trenell MI (2011) Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut 60(9):1278–1283

    PubMed  Google Scholar 

  53. Juraschek SP, Blaha M, Blumenthal RS, Brawner C, Qureshi W, Keteyian SJ, Schairer J, Ehrman JK, Al-Mallah MH (2015) Cardiorespiratory fitness and incident diabetes: the FIT (Henry Ford ExercIse Testing) project. Diabetes Care 38(6):1075–1081

    PubMed  Google Scholar 

  54. Stephenson K, Kennedy L, Hargrove L, Demieville J, Thomson J, Alpini G, Francis H (2018) Updates on dietary models of nonalcoholic fatty liver disease: current studies and insights. Gene Expr 18:5–17

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Romestaing C, Piquet MA, Bedu E, Rouleau V, Dautresme M, Hourmand-Ollivier I, Filippi C, Duchamp C, Sibille B (2007) Long term highly saturated fat diet does not induce NASH in wistar rats. Nutr Metab (Lond) 4:4. https://doi.org/10.1186/1743.7075.4.4)

    Article  Google Scholar 

  56. Chen PJ, Cai SP, Huang C, Meng XM, Li J (2015) Protein tyrosine phosphatase 1B (PTP1B): A key regulator and therapeutic target in liver diseases. Toxicology 337:10–20

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the technical support for rat diet preparation of the following undergraduate students: JF Orellana, P Meneses, C Espinoza, R Farias, M Muñoz, and A Rivas, from the School of Nutrition and Dietetics (Universidad de Chile). The authors also acknowledge the contribution of Marcelo Cano, PhD, and Alex Barham, MSc, for implementing the exercise protocol.

Funding

This work was supported by the National Commission for Research in Science and Technology (CONICYT), research project FONDECYT 1160792

Author information

Authors and Affiliations

Authors

Contributions

AV, MRu, and MAO conceptualized and designed the research. AV, KM, AE, JC, JI, and KV performed the experiments. AV, MRi, and MAO analyzed the data. AV, MRi, MRu, and MAO interpreted the results of experiments. AV, MRi, and MAO prepared the figures. AV and MA drafted the manuscript. MRu and MAO edited and revised the manuscript. MAO and MRu approved the final version of manuscript.

Corresponding author

Correspondence to Miguel Arredondo.

Ethics declarations

Conflict of Interest

Manuel Ruz, Jorge Inostroza, Diego García, and Miguel Arredondo received payment from the research project FONDECYT 1160792 that funded this study. The rest of authors declare that they have no conflicts of interest.

Ethical Approval

Animal experiments were performed in accordance with animal protection regulations of the Faculty of Medicine, University of Chile. The protocol was approved by the Bioethics Committee, Faculty of Medicine, University of Chile.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivero, A., Ruz, M., Rivera, M. et al. Zinc Supplementation and Strength Exercise in Rats with Type 2 Diabetes: Akt and PTP1B Phosphorylation in Nonalcoholic Fatty Liver. Biol Trace Elem Res 199, 2215–2224 (2021). https://doi.org/10.1007/s12011-020-02324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02324-3

Keywords

Navigation