Skip to main content
Log in

In Vitro and In Vivo Pretreatment with Selenium Mitigates Tetrahydrocannabinol-Induced Testicular Cell Apoptosis: the Role of AKT and p53 Pathways

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Exocannabinoids such as tetrahydrocannabinol (THC) may alter the physiological function of endocannabinoids in male reproduction and thus affect male fertility. This study aimed to investigate the apoptotic effects of THC via mechanisms related to p53 and AKT signaling pathways on Sertoli cells and seminiferous germinal cells, as well as the possible protective role of selenium pretreatment in both in vitro and in vivo models. The Mus musculus Sertoli cell line, TM4, was used for in vitro experiments. The TM4 cells were cultured and exposed to selenium (2 μM, 48 h) and THC (470 μM, 24 h). The MTT test was performed to evaluate cell viability. Fifteen male Wistar rats (220 ± 20 g) were used for in vivo experiments and divided into three groups: (1) control, (2) tetrahydrocannabinol (THC, 5 mg/kg, dissolved in DMSO 5%, i.p., for 21 consecutive days), and (3) THC + selenium (selenium, 0.5 mg/kg per day, i.p.). At the end of the experiments, Sertoli cells and testis tissue samples were collected for biochemical (AKT, P53), cell apoptosis, and histological analyses. The results of the in vitro study revealed that THC significantly decreases the cell viability (p < 0.001) and expression of the p-AKt protein (p < 0.05) and increases Sertoli cells’ apoptosis (p < 0.001) and p53 protein expression (p < 0.001). The in vivo effects of THC were in line with the in vitro results. Pretreatment with selenium (as sodium selenite) significantly decreased the THC-induced Sertoli cell and testicular tissue damages in the rats. Pathological changes were significantly alleviated in the selenium-pretreated rats. Collectively, these data suggest that pretreatment with selenium is able to protect against THC-induced testicular cell damage. The attenuating effect of selenium may be due to its anti-apoptotic activity through the p53 and AKT modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iversen LL (2000) The Science of Marijuana. Oxford University Press, Oxford, p 283

    Google Scholar 

  2. Grimaldi P, Di Giacomo D, Geremia R (2013) The endocannabinoid system and spermatogenesis. Front Endocrinol 4:192

    Google Scholar 

  3. Nahas GG, Frick HC, Lattimer JK, Latour C, Harvey D (2002) Pharmacokinetics of THC in brain and testis, male gametotoxicity and premature apoptosis of spermatozoa. Hum Psychopharmacol Clin Exp 17(2):103–113

    CAS  Google Scholar 

  4. Habayeb OM, Bell SC, Konje JC (2002) Endogenous cannabinoids: metabolism and their role in reproduction. Life Sci 70(17):1963–1977

    CAS  PubMed  Google Scholar 

  5. Symons AM, Teale JD, Marks V (1976) Proceedings: effect of delta9-tetrahydrocannabinol on the hypothalamic-pituitary-gonadal system in the maturing male rat. J Endocrinol 68(3):43p–44p

    CAS  PubMed  Google Scholar 

  6. Wenger T, Ledent C, Csernus V, Gerendai I (2001) The central cannabinoid receptor inactivation suppresses endocrine reproductive functions. Biochem Biophys Res Commun 284(2):363–368

    CAS  PubMed  Google Scholar 

  7. Fonseca BM, Correia-da-Silva G, Teixeira NA (2018) Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis. J Physiol Biochem 74(2):261–272

    CAS  PubMed  Google Scholar 

  8. Patsos HA, Greenhough A, Hicks DJ, al Kharusi M, Collard TJ, Lane JD, Paraskeva C, Williams AC (2010) The endogenous cannabinoid, anandamide, induces COX-2-dependent cell death in apoptosis-resistant colon cancer cells. Int J Oncol 37(1):187–193

    CAS  PubMed  Google Scholar 

  9. Almada M, Costa L, Fonseca BM, Amaral C, Teixeira N, Correia-da-Silva G (2017) The synthetic cannabinoid WIN-55,212 induced-apoptosis in cytotrophoblasts cells by a mechanism dependent on CB1 receptor. Toxicology 385:67–73

    CAS  PubMed  Google Scholar 

  10. Lee PJ et al (2015) Bisdemethoxycurcumin Induces apoptosis in activated hepatic stellate cells via cannabinoid receptor 2. Molecules 20(1):1277–1292

    PubMed  PubMed Central  Google Scholar 

  11. Gomez R et al (2014) Endogenous cannabinoid anandamide impairs cell growth and induces apoptosis in chondrocytes. J Orthop Res 32(9):1137–1146

    CAS  PubMed  Google Scholar 

  12. Singh UP, Singh NP, Singh B, Price RL, Nagarkatti M, Nagarkatti PS (2012) Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10(-/-) mice by attenuating the activation of T cells and promoting their apoptosis. Toxicol Appl Pharmacol 258(2):256–267

    CAS  PubMed  Google Scholar 

  13. Maccarrone M, Cecconi S, Rossi G, Battista N, Pauselli R, Finazzi-Agrò A (2003) Anandamide activity and degradation are regulated by early postnatal aging and follicle-stimulating hormone in mouse Sertoli cells. Endocrinology 144(1):20–28

    CAS  PubMed  Google Scholar 

  14. Rossi G, Gasperi V, Paro R, Barsacchi D, Cecconi S, Maccarrone M (2007) Follicle-stimulating hormone activates fatty acid amide hydrolase by protein kinase A and aromatase-dependent pathways in mouse primary Sertoli cells. Endocrinology 148(3):1431–1439

    CAS  PubMed  Google Scholar 

  15. Li Q, Wang F, Zhang YM, Zhou JJ, Zhang Y (2013) Activation of cannabinoid type 2 receptor by JWH133 protects heart against ischemia/reperfusion-induced apoptosis. Cell Physiol Biochem 31(4-5):693–702

    CAS  PubMed  Google Scholar 

  16. Fujii M, Sherchan P, Soejima Y, Hasegawa Y, Flores J, Doycheva D, Zhang JH (2014) Cannabinoid receptor type 2 agonist attenuates apoptosis by activation of phosphorylated CREB-Bcl-2 pathway after subarachnoid hemorrhage in rats. Exp Neurol 261:396–403

    CAS  PubMed  Google Scholar 

  17. Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22(56):9030–9040

    CAS  PubMed  Google Scholar 

  18. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283

    CAS  PubMed  Google Scholar 

  19. Yang ZZ, Tschopp O, Baudry A, Dümmler B, Hynx D, Hemmings BA (2004) Physiological functions of protein kinase B/Akt. Biochem Soc Trans 32(Pt 2):350–354

    CAS  PubMed  Google Scholar 

  20. Gowran A, Campbell VA (2008) A role for p53 in the regulation of lysosomal permeability by delta 9-tetrahydrocannabinol in rat cortical neurones: implications for neurodegeneration. J Neurochem 105(4):1513–1524

    CAS  PubMed  Google Scholar 

  21. Downer EJ, Gowran A, Murphy ÁC, Campbell VA (2007) The tumour suppressor protein, p53, is involved in the activation of the apoptotic cascade by Δ9-tetrahydrocannabinol in cultured cortical neurons. Eur J Pharmacol 564(1-3):57–65

    CAS  PubMed  Google Scholar 

  22. Velez-Pardo C, Del Rio MJ (2006) Avoidance of Abeta[(25-35)] / (H(2)O(2)) -induced apoptosis in lymphocytes by the cannabinoid agonists CP55,940 and JWH-015 via receptor-independent and PI3K-dependent mechanisms: role of NF-kappaB and p53. Med Chem 2(5):471–479

    CAS  PubMed  Google Scholar 

  23. Shi L, Song R, Yao X, Ren Y (2017) Effects of selenium on the proliferation, apoptosis and testosterone production of sheep Leydig cells in vitro. Theriogenology 93:24–32

    CAS  PubMed  Google Scholar 

  24. Kielczykowska M et al (2018) Selenium - a fascinating antioxidant of protective properties. Adv Clin Exp Med 27(2):245–255

    PubMed  Google Scholar 

  25. Cuello S, Ramos S, Mateos R, Martín MA, Madrid Y, Cámara C, Bravo L, Goya L (2007) Selenium methylselenocysteine protects human hepatoma HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide. Anal Bioanal Chem 389(7-8):2167–2178

    CAS  PubMed  Google Scholar 

  26. Song R, Yao X, Shi L, Ren Y, Zhao H (2015) Effects of dietary selenium on apoptosis of germ cells in the testis during spermatogenesis in roosters. Theriogenology 84(4):583–588

    CAS  PubMed  Google Scholar 

  27. Erkekoglu P, Zeybek ND, Giray B, Asan E, Hincal F (2012) The effects of di(2-ethylhexyl)phthalate exposure and selenium nutrition on sertoli cell vimentin structure and germ-cell apoptosis in rat testis. Arch Environ Contam Toxicol 62(3):539–547

    CAS  PubMed  Google Scholar 

  28. Pourhassanali N, Roshan-Milani S, Kheradmand F, Motazakker M, Bagheri M, Saboory E (2016) Zinc attenuates ethanol-induced Sertoli cell toxicity and apoptosis through caspase-3 mediated pathways. Reprod Toxicol 61:97–103

    CAS  PubMed  Google Scholar 

  29. Fenkci V, Fenkci S, Yilmazer M, Serteser M (2003) Decreased total antioxidant status and increased oxidative stress in women with polycystic ovary syndrome may contribute to the risk of cardiovascular disease. Fertil Steril 80(1):123–127

    PubMed  Google Scholar 

  30. Huang HF, Nahas GG, Hembree WC III (1979) Effects of marihuana inhalation on spermatogenesis of the rat. In: Marihuana Biological Effects. Elsevier, Amsterdam, pp 419–427

    Google Scholar 

  31. Dalterio S, Steger R, Mayfield D, Bartke A (1984) Early cannabinoid exposure influences neuroendocrine and reproductive functions in mice: II. Postnatal effects. Pharmacol Biochem Behav 20(1):115–123

    CAS  PubMed  Google Scholar 

  32. Orth JM, Gunsalus GL, Lamperti AA (1988) Evidence from Sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology 122(3):787–794

    CAS  PubMed  Google Scholar 

  33. Galve-Roperh I, Sánchez C, Cortés ML, del Pulgar TG, Izquierdo M, Guzmán M (2000) Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med 6(3):313–319

    CAS  PubMed  Google Scholar 

  34. Lavin Ma, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13(6):941–950

    CAS  PubMed  Google Scholar 

  35. Levine AJ, Tomasini R, McKeon FD, Mak TW, Melino G (2011) The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol 12(4):259–265

    CAS  PubMed  Google Scholar 

  36. Hasegawa M, Zhang Y, Niibe H, Terry NHA, Meistrich ML (1998) Resistance of differentiating spermatogonia to radiation-induced apoptosis and loss in p53-deficient mice. Radiat Res 149(3):263–270

    CAS  PubMed  Google Scholar 

  37. Lambrot R, Coffigny H́, Pairault C, Lécureuil C, Frydman Ŕ, Habert Ŕ, Rouiller-Fabre V (2007) High radiosensitivity of germ cells in human male fetus. J Clin Endocrinol Metab 92(7):2632–2639

    CAS  PubMed  Google Scholar 

  38. Adimoolam S, Ford JM (2002) p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci 99(20):12985–12990

    CAS  PubMed  Google Scholar 

  39. Pluquet O, Hainaut P (2001) Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett 174(1):1–15

    CAS  PubMed  Google Scholar 

  40. Smith ML, Lancia JK, Mercer TI, Ip C (2004) Selenium compounds regulate p53 by common and distinctive mechanisms. Anticancer Res 24(3A):1401–1408

    CAS  PubMed  Google Scholar 

  41. Himeno S, Imura N (2002) Selenium in nutrition and toxicology, heavy metals in the environment. Kitasato University Press, Tokyo

    Google Scholar 

  42. Mueller S, Drost M, Fox CM (2007) Dietary and intraperitoneal administration of selenium provide comparable protection in the 6-hydroxydopamine lesion rat model of Parkinson’s disease. Impulse:1–10

  43. Ellert-Miklaszewska A, Kaminska B, Konarska L (2005) Cannabinoids down-regulate PI3K/Akt and Erk signalling pathways and activate proapoptotic function of Bad protein. Cell Signal 17(1):25–37

    CAS  PubMed  Google Scholar 

  44. Greenhough A, Patsos HA, Williams AC, Paraskeva C (2007) The cannabinoid δ9-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. Int J Cancer 121(10):2172–2180

    CAS  PubMed  Google Scholar 

  45. Nascimento AR, Pimenta MT, Lucas TFG, Royer C, Porto CS, Lazari MFM (2012) Intracellular signaling pathways involved in the relaxin-induced proliferation of rat Sertoli cells. Eur J Pharmacol 691(1-3):283–291

    CAS  PubMed  Google Scholar 

  46. Wang H, Wang J, Zhang J, Jin S, Li H (2017) Role of PI3K/AKT/mTOR signaling pathway in DBP-induced apoptosis of testicular sertoli cells in vitro. Environ Toxicol Pharmacol 53:145–150

    CAS  PubMed  Google Scholar 

  47. Li Y, Guo M, Lin Z, Zhao M, Xia Y, Wang C, Xu T, Zhu B (2018) Multifunctional selenium nanoparticles with Galangin-induced HepG2 cell apoptosis through p38 and AKT signalling pathway. R Soc Open Sci 5(11):180509

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schuel H, Burkman LJ (2005) A tale of two cells: endocannabinoid-signaling regulates functions of neurons and sperm1. Biol Reprod 73(6):1078–1086

    CAS  PubMed  Google Scholar 

  49. Fischer JL et al (2006) Selenium protection from DNA damage involves a Ref1/p53/Brca1 protein complex. Anticancer Res 26(2A):899–904

    CAS  PubMed  Google Scholar 

  50. Flohe L (2007) Selenium in mammalian spermiogenesis. Biol Chem 388(10):987–995

    CAS  PubMed  Google Scholar 

  51. Erkekoğlu P, Rachidi W, Yüzügüllü OG, Giray B, Öztürk M, Favier A, Hıncal F (2011) Induction of ROS, p53, p21 in DEHP-and MEHP-exposed LNCaP cells-protection by selenium compounds. Food Chem Toxicol 49(7):1565–1571

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the experienced personnel of the Nephrology and Kidney Transplantation Research Center of the UMSU.

Funding

This study was part of an MSc thesis and was supported by Urmia University of Medical Sciences (UMSU) (grant no. 2370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Abdollahzade Fard.

Ethics declarations

All procedures for the animals were conducted in accordance with the Principles of Laboratory Animal Care (NIH publication No. 85-23, revised in 1985) and approved by the Ethics Committee of Urmia University of Medical Sciences (ethics code: IR.UMSU.REC.1397.234).

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

All procedures for the animals were conducted in accordance with the Principles of Laboratory Animal Care (NIH publication no. 85-23, revised 1985) and approved by the Ethical Committee of the Urmia University of Medical Sciences (ethical code: IR.UMSU.REC.1397.234).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, K., Roshan-Milani, S., Asgharzadeh, F. et al. In Vitro and In Vivo Pretreatment with Selenium Mitigates Tetrahydrocannabinol-Induced Testicular Cell Apoptosis: the Role of AKT and p53 Pathways. Biol Trace Elem Res 199, 2278–2287 (2021). https://doi.org/10.1007/s12011-020-02322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02322-5

Keywords

Navigation