Skip to main content

Risk Assessment of Cd, Cu, and Pb from the consumption of hunted meat: red-legged partridge and wild rabbit

Abstract

The objective was to assess that potential health risk from Cd, Cu, and Pb, through the consumption of hunted red-legged partridge and wild rabbit meat, with special focus on the population of hunters and their relatives. Mineral content was analyzed by atomic absorption methods (F-AAS for Cu and GF-AAS for Cd and Pb) after microwave digestion of lyophilized samples. The average concentrations of these elements were 0.008 and 0.01 mg/kg for Cd; 1.41 and 1.63 mg/kg for Cu and 0.98 and 1.28 mg/kg for Pb in wild rabbit and red-legged partridge meat respectively. The dietary, risk assessment was performed by assuming two intake scenarios based on the obtained results of the survey on game meat consumption and the current maximum recommended intakes of Cd, Cu, and Pb, and then, the hazard quotients (THQ and TTHQ) were calculated. The data show that exposure to these metals from eating red-legged partridge and wild rabbit meat from a hunting provenance is relatively low and generally greater in the hunter population. The risk assessment revealed that moderate or low consumption of meat of these species does not offer a significant public health risk. Moreover, hazard quotients values for these metals of red-legged partridge and rabbit meat consumption in hunters and nonhunters are below 1. However, a high Pb content in the meat of these species and a high consumption may pose a greater health risk to hunters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Danzberger JB (2009) La caza: un elemento esencial en el desarrollo rural. Colección Mediterráneo económico. CAJAMAR Caja Rural. (Eds) ISBN-13:978-84-95531-43-8 (15):183-203.Spain

  2. StrazdinaV JA, Sterna V, Vjazevica V (2011) Evaluation of protein composition of game meat in Latvian farms and wildlife. Agron Res 9:469–472

    Google Scholar 

  3. Sales J, Kotrba R (2013) Meat from wild boar (Sus scrofa L.): a review. Meat Sci 94(2):187–201. https://doi.org/10.1016/j.meatsci.2013.01.012

    CAS  Article  PubMed  Google Scholar 

  4. Kudrnáčová E, Bartoň L, Bureš D, Hoffman LC (2018) Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci 141:9–27. https://doi.org/10.1016/j.meatsci.2018.02.020

    Article  PubMed  Google Scholar 

  5. Marescotti MA, Caputo V, Demartini E, Gaviglio A (2019) Discovering market segments for hunted wild game meat. Meat Sci 149:163–176. https://doi.org/10.1016/j.meatsci.2018.11.019

    Article  PubMed  Google Scholar 

  6. Ramanzin M, Amici A, Casoli C, Esposito L, Lupi P, Marsico G, Mattiello S, Olivieri PMP, Russo C, Trabalza-Marinucci M (2010) Meat from wild ungulates: ensuring quality and hygiene of an increasing resource. Ital J Anim Sci 9:3. https://doi.org/10.4081/ijas.2010.e61

    Article  Google Scholar 

  7. Guitart R, Thomas VG (2005) ¿Es el plomo empleado en deportes (caza, tiro y pesca deportiva) un problema de salud pública infravalorado? Rev Esp Salud Pública 79:621–632

    Article  Google Scholar 

  8. Taggart MA, Reglero MM, Camarero PR, Mateo R (2011) Should legislation regarding maximum Pb and Cd levels in human food also cover large game meat? Environ Int 37:18–25. https://doi.org/10.1016/j.envint.2010.06.007

    CAS  Article  PubMed  Google Scholar 

  9. Durkalec M, Szkoda J, Kolacz R, Opalinski S, Nawrocka A, Zmudzki J (2015) Bioaccumulation of lead, cadmium and mercury in roe deer and wild boars from areas with different levels of toxic metal pollution. Int J Environ Res 9(1):205–212

    CAS  Google Scholar 

  10. Bilandzcic N, Sedak M, Vrataríc DT, Simíc B (2009) Lead and cadmium in red deer and wild boar from different hunting grounds in Croatia. Sci Total Environ 407:4243–4247. https://doi.org/10.1016/j.scitotenv.2009.04.009

    CAS  Article  Google Scholar 

  11. Sevillano-Morales JS, Moreno-Rojas R, Pérez-Rodríguez F, Arenas Casas A, Amaro López MA (2011) Risk assessment of the lead intake by consumption of red deer and wild boar meat in Southern Spain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 35(9):1739–1748. https://doi.org/10.1080/19440049.2011.583282

    CAS  Article  Google Scholar 

  12. Taylor CM, Golding J, Emond AM (2013) Intake of game birds in the UK: assessment of the contribution to the dietary intake of lead by women of childbearing age and children. Public Health Nutr 17(5):1125–1129. https://doi.org/10.1017/S1368980013000748

    Article  PubMed  Google Scholar 

  13. Lazarus M, Crnic AP, Bilandzic N, Kusak J, Reljic S (2014) Cadmium, lead and mercury exposure assessment among Croatian consumers of free-living game. Arh Hig Rada Roksikol 65:281–292. https://doi.org/10.2478/10004-1254-65-2014-2527

    Article  Google Scholar 

  14. Andreotti A, Broghesi F, Aradis A (2016) Lead ammunition residues in the meat of hunted woodcock: a potential health risk to consumers. Ital J Anim Sci 15(1):22–29. https://doi.org/10.1080/1828051X.2016.1142360

    CAS  Article  Google Scholar 

  15. Gašparík J, Binkowski LJ, Jahnátek A, Šmehýl P, Dobiaš M, Lukáč N, Błaszczyk M, Semla M, Massanyi P (2017) Levels of metals in kidney, liver, and muscle tissue and their influence on the fitness for the consumption of wild boar from Western Slovakia. Biol Trace Elem Res 177(2):258–266. https://doi.org/10.1007/s12011-016-0884-z

    CAS  Article  PubMed  Google Scholar 

  16. McAuley C, Ng C, McFarland C, Dersch A, Koppe B, Sowan D (2018) Lead exposure through consumption of small game harvested using lead-based ammunition and the corresponding health risks to first nations in Alberta, Canada. Cogent Environ Sci. Accepted manuscript:1557316. https://doi.org/10.1080/23311843.2018.1557316

  17. Gerofke A, Ulbig E, Martin A, Müller-Graf C, Selhorst T, Gremse C, Spolders M, Schafft H, Heinemeyer G, Greiner M, Lahrssen-Wiederholt M, Hensel A (2018) Lead content in wild game shot with lead or non-lead ammunition – does “state of the art consumer health protection” require non-lead ammunition? PLoS One 13(7):e0200792. https://doi.org/10.1371/journal.pone.0200792

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. European Commission Regulation No 1881/2006 (2006) Setting maximum levels for certain contaminants in foodstuffs. Available in https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF

  19. Pain DJ, Cromie RL, Newth J, Brown MJ, Crutcher E, Hardam P, Hurst L, Mateo R, Meharg AA, Moran AC, Raab A, Taggart MA, Green RE (2010) Potential hazard to human health from exposure to fragments of lead bullets and shot in the tissues of game animals. PLoS One 5:e10315. https://doi.org/10.1371/journal.pone.0010315

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Mateo R, Baos AR, Vidal D, Camarero PR, Martínez-Haro M, Taggart MA (2011) Bioaccessibility of Pb from ammunition in game meat is affected by cooking treatment. PLoS One 6(1):e15892–e15892. https://doi.org/10.1371/journal.pone.0015892

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Sevillano-Morales JS, Moreno-Ortega A, Amaro-López MA, Arenas Casas A, Cámara-Martos F, Moreno-Rojas R (2018) Game meat consumption by hunters and their relatives: a probabilistic approach. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 35(9):1739–1748. https://doi.org/10.1080/19440049.2018.1488183

    CAS  Article  PubMed  Google Scholar 

  22. Agencia Española De Seguridad Alimentaria y Nutrición (AESAN) (2012) Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición sobre el riesgo asociado a la presencia de plomo en carne de caza silvestre en España. AESAN 2012-002:131-159. Available in http://www.aecosan.msssi.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/evaluacion_riesgos/informes_comite/PLOMO_CAZA.pdf

  23. Green RE, Pain DJ (2012) Potential health risks to adults and children in the UK for exposure to dietary lead in game birds shot with lead ammunition. Food Chem Toxicol 50:4180–4190. https://doi.org/10.1016/j.fct.2012.08.032

    CAS  Article  PubMed  Google Scholar 

  24. Meltzer HM, Dahl H, Brantsæter AL, Birgisdottir BE, Knutsen HK, Bernhoft A, Oftedal B, Lande US, Alexander J, Haugen M, Ydersbond TA (2013) Consumption of lead-shot cervid meat and blood lead concentrations in a group of adult Norwegians. Environ Res 127:29–39. https://doi.org/10.1016/j.envres.2013.08.007

    CAS  Article  PubMed  Google Scholar 

  25. Fisher IJ, Pain DJ, Thomas VG (2006) A review of lead poisoning from ammunition sources in terrestrial birds. Biol Conserv 131(3):421–432. https://doi.org/10.1016/j.biocon.2006.02.018

    Article  Google Scholar 

  26. Group of Scientists (2014) Wildlife and human health risks from lead-based ammunition in Europe: a consensus statement by scientists. Available from: http://www.zoo.cam.ac.uk/-.

  27. Real Decreto 581/2001, de 1 de junio, por el que en determinadas zonas húmedas se prohíbe la tenencia y el uso de municiones que contengan plomo para el ejercicio de la caza y el tiro deportivo. Boletín Oficial del Estado n°. 143: 21284-21286. Available in https://www.boe.es/buscar/pdf/2001/BOE-A-2001-11455-consolidado.pdf

  28. Peele ER, Havekost DG, Halberstam RC, Koons RD, Peters CA, Riley JP (1991) Comparison os bullets using the elemental composition of the lead component. In: Proceedings of International symposium on the forensic aspect of trace evidence. US Government Printing Office, Washington DC, pp 57–68

    Google Scholar 

  29. Gnamuš A, Byrne AR, Horvat M (2000) Mercury in the soil-plant-deer-predator food chain of a temperate forest in Slovenia. Environ Sci Technol 34(16):3337–3345. https://doi.org/10.1021/es991419w

    CAS  Article  Google Scholar 

  30. García-Gómez JJ (2005) Estudio del Análisis de Peligros y Puntos de Control Crítico (APPCC) en salas de tratamiento de carne de caza (zona básica de salud: Valmojado-Toledo): incorporación del plomo como peligro químico. Thesis; University of Madrid. Madrid

  31. Marval-León JR, Cámara-Martos F, Pérez-Rodríguez F, Amaro López MA, Moreno-Rojas R (2012) Optimization of selenium determination based on the HG-ET-AAS method for its application to different food matrices. Food Anal Methods 5:1054–1061. https://doi.org/10.1007/s12161-011-9338-6

    Article  Google Scholar 

  32. Reglamento (CE) N° 333/2007 de la Comisión de 28 de marzo de 2007 por el que se establecen los métodos de muestreo y análisis para el control oficial de los niveles de plomo, cadmio, mercurio, estaño inorgánico, 3-MCPD y benzo(a)pireno en los productos alimenticios. Available in https://eur-lex.europa.eu/legal-content/ES/TXT/HTML/?uri=CELEX:32007R0333

  33. European Food Safety Authority (EFSA) (2010) Scientific opinion on lead in food. EFSA J 8(4):1540–1687. https://doi.org/10.2903/j.efsa.2010.1570

    CAS  Article  Google Scholar 

  34. European Food Safety Authority (EFSA) (2009) Cadmium in food. EFSA J 980:1–139. https://doi.org/10.2903/j.efsa.2009.980

    Article  Google Scholar 

  35. European Food Safety Authority (EFSA) (2011) Statement on tolerable weekly intake for cadmium. EFSA Journal, 9 (2):1975. Available in https://doi.org/10.2903/j.efsa.2011.1975.

  36. Joint FAO/WHO Expert Committee on Food Additives (JECFA) (1982) Evaluation of certain food additives and contaminants. Cambridge, Cambridge University Press. WHO Food Additives Series, No. 17.

  37. United States Environmental Protection Agency (US EPA) (2007) Integrated risk information system-database. Philadelphia, Washington, DC.

  38. Losasso C, Bille L, Patuzzi I, Lorenzetto M, Binato G, Dalla Pozza M, Ricci A (2015) Possible influence of natural events on heavy metals exposure from shellfish consumption: a case study in the North-East of Italy. Front Public Health 3:21. https://doi.org/10.3389/fpubh.2015.00021

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhuang P, Lu H, Li Z, Zou B, McBride MB (2014) Multiple exposure and effects assessment of heavy metals in the population near mining area in South China. PLoS One 9(4):e94484. https://doi.org/10.1371/journal.pone.0094484

    Article  PubMed  PubMed Central  Google Scholar 

  40. Aendo P, Thongyuan S, Songserm T, Tulayakul P (2019) Carcinogenic and non-carcinogenic risk assessment of heavy metals contamination in duck eggs and meat as a warning scenario in Thailand. Sci Total Environ 689:215–222. https://doi.org/10.1016/j.scitotenv.2019.06.414

    CAS  Article  PubMed  Google Scholar 

  41. United States Environmental Protection Agency (US EPA) (1986) Guidelines for the health risk assessment of chemical mixtures. Federal Register, 51: 34014–34025, 2000; http://www.epa.gov/raf/ publications/pdfs/CHEMMIX_1986.PDF

  42. Lei B, Zhang K, An J, Zhang X, Yu Y (2015) Human health risk assessment of multiple contaminants due to consumption of animal-based foods available in the markets of Shanghai, Chima. Environ Sci Pollut Res 22:4434–4446. https://doi.org/10.1007/s11356-014-3683-0

    CAS  Article  Google Scholar 

  43. Roselli C, Desideri D, Meli MA, Fagiolino I, Feduzi L (2016) Essential and toxic elements in meat of wild birds. J Toxicol Environ Health A 79(21):1008–1014. https://doi.org/10.1080/15287394.2016.1216490

    CAS  Article  PubMed  Google Scholar 

  44. Burger J, Kennamer RA, Lehr Brisbin JR, Gochfel DM (1997) Metal levels in mourning doves from South Carolina: Potencial Hazards to Doves and Hunters. Environ Res 75:173–186

    CAS  Article  Google Scholar 

  45. Ertl K, Kitzer R, Goessier W (2016) Elemental composition of game meat from Austria. Food Addit Contam Part B Surveill 9(2):120–126. https://doi.org/10.1080/19393210.2016.1151464

    CAS  Article  PubMed  Google Scholar 

  46. Damerau A, Venalainen ER, Peltonen K (2012) Heavy metals in meat of Finnish city rabbits. Food Addit Contam Part B Surveill 5(4):246–250. https://doi.org/10.1080/19393210.2012.702131

    CAS  Article  PubMed  Google Scholar 

  47. Dlugaszek M, Kopczynski K (2013) Elemental composition of muscle tissue of wild animals from Central Region of Poland. J Environ Res 7(4):973–978. https://doi.org/10.22059/IJER.2013.680

    CAS  Article  Google Scholar 

  48. Toman R, Massányi P (1996) Cadmium in selected organs of fallow-deer (Dama dama), sheep (Ovis aries), brown hare (Lepus europeaus) and rabbit (Oryctolagus cunículus). J Environ Sci Health A 31(5):1043–1051. https://doi.org/10.1080/10934529609376406

    Article  Google Scholar 

  49. Krełowska-Kułas M, Kudełka W, Staliński Z, Bieniek J (1994) Content of metals in rabbit tissues. Nahrung 38(4):393–396. https://doi.org/10.1002/food.19940380408

    Article  PubMed  Google Scholar 

  50. Lombardi-Boccia G, Lanzi S, Aguzzi A (2005) Aspects of meat quality: trace elements and B vitamins in raw and cooked meats. J Food Compos Anal 18:39–46. https://doi.org/10.1016/j.jfca.2003.10.007

    CAS  Article  Google Scholar 

  51. Hermida M, González M, Miranda M, Rodríguez-Otero JL (2006) Mineral analysis in rabbit meat from Galicia (SW Spain). Meat Sci 73:635–639. https://doi.org/10.1016/j.meatsci.2006.03.004

    CAS  Article  PubMed  Google Scholar 

  52. Valenzuela C, López de Romaña D, Schmiede C, Sol Morales M, Olivares M, Pizarro F (2011) Total iron, heme iron, zinc, and copper content in rabbit meat and viscera. Biol Trace Elem Res 143(3):1489–1496. https://doi.org/10.1007/s12011-011-8989-x

    CAS  Article  PubMed  Google Scholar 

  53. Hiller BJ, Barclay JS (2011) Concentrations of heavy metals in American woodcock harvested in connecticut. Arch Environ Cotam Toxicol 60:156–164. https://doi.org/10.1007/s0024-010-9525-2

    CAS  Article  Google Scholar 

  54. Mateo R, Vallverdú-Coll N, López-Antia A, Taggart MA, Martínez-Haro M, Guitart R, Ortiz-Santaliestra ME (2014) Reducing Pb poisoning in birds and Pb exposure in game meat consumers. The dual benefit of effective Pb shot regulation. Environ Int 63:163–168. https://doi.org/10.1016/j.envint.2013.11.006

    CAS  Article  PubMed  Google Scholar 

  55. Johansen P, Asmund G, Riget F (2004) High human exposure to lead through consumption of birds hunted with lead shot. Environ Pollut 127(1):125–129. https://doi.org/10.1016/S0269-7491(03)00255-0

    CAS  Article  PubMed  Google Scholar 

  56. Sevillano-Morales JS, Cejudo-Gómez M, Ramírez-Ojeda AM, Cámara-Martos F, Moreno-Rojas R (2015) Risk profile of methylmercury in seafood. Curr Opin Food Sci 6:53–60. https://doi.org/10.1016/j.cofs.2016.01.003

    Article  Google Scholar 

  57. Rubio C, Gutiérrez AJ, Martín-Izquierdo RE, Revert C, Lozano G, Hardisson A (2004) El plomo como contaminante alimentario. Rev Toxicol 21:72–80

    CAS  Google Scholar 

  58. SCOOP (Scientific Cooperation) (2004) SCOOP Report of experts participating in Task 3.2.11. Mach 2004. Assessment of the dietary exposure to arsenic, cadmium, lead and mercury of the population of the EU Member States. 125. https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_catalogue_scoop_3-2-11_heavy_metals_report_en.pdf.

  59. Martín A, Muller-Graf C, Selhorst T, Gerofke A, Ulbig E, Gremse C, Greiner M, Lahrssen-Wiederholt M, Hensel A (2019) Comparison of lead levels in edible parts of red deer hunted with lead or non-lead ammunition. Sci Total Environ 653(25):315–326. https://doi.org/10.1016/j.scitotenv.2018.10.393

    CAS  Article  PubMed  Google Scholar 

  60. Ferrandis P, Mateo R, López-Serrano FR, Martínez-Haro M, Martínez-Duro E (2008) Lead-shot exposure in red-legged partridge (Alectorisrufa) on a driven shooting estate. Environ Sci Technol 42:6271–6277. https://doi.org/10.1021/es800215y

    CAS  Article  PubMed  Google Scholar 

  61. Hunt WG, Burnham W, Parish CN, Burnham KK, Mutch B, Oaks JL (2006) Bullet fragments in deer remains implications for lead exposure in avian scavengers. Wildl Soc Bull 34:167–170. https://doi.org/10.1371/journal.pone.0005330

    CAS  Article  Google Scholar 

  62. European Food Safety Authority (EFSA) (2012) Cadmium dietary exposure in the European population. EFSA J 10(1):2551. https://doi.org/10.2903/j.efsa.2012.2551

    CAS  Article  Google Scholar 

  63. European Food Safety Authority (EFSA) (2006) Tolerable upper intake levels for vitamins and minerals. Scientific Committee on food (SCF). Scientific Panel on Dietetic Products, Nutrition and Allergies (NDA) (92-9199-014-0). Available in http://tinyurl.com/ybqxctuv.

  64. Schlichting D, Sommerfeld C, Müller-Graf C, Selhorst T, Greiner M, Gerofke A, Ulbig E, Gremse C, Spolders M, Schafft H, Lahrssen-Wiederholt M (2017) Copper and zinc content in wild game shot with lead or non-lead ammunition–implications for consumer health protection. PLoS One 12(9):e0184946. https://doi.org/10.1371/journal.pone.0184946

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Haldimann M, Baungartner A, Zimmerli B (2002) Intake of lead from game meat: a risk to consumers´ health? Eur Food Res Technol 215:375–379. https://doi.org/10.1007/s00217-002-0581-3

    CAS  Article  Google Scholar 

  66. Ministerio de Agricultura, Alimentación y Medio Ambiente (2016) Informe del consumo de alimentación en España 2016. (http://www.mapama.gob.es/es/alimentacion/temas/consumo-y-comercializacion-y-distribucionalimentaria/informe_del_consumo_de_alimentos_en_espana_2016_web_tcm7-460602.pdf).

  67. Ministerio de Agricultura, Alimentación y Medio Ambiente (2016) Estadísticas de caza 2005-2016. Available in http://www,magrama,gob,es/es/desarrollo-rural/estadisticas/caza_pesca,aspx

Download references

Acknowledgements

Thanks also to hunters and hunter societies without whose collaboration the development of this research work would not have been possible. Finally, the authors thank the collaboration of Diana Badder in the English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Cámara-Martos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Guidelines for using animals

In this study, authorization from Bioethics and Biosecurity Committee was not needed due to the fact that all animals were secured in accordance with current hunting regulations in Spain

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sevillano-Morales, J.S., Sevillano-Caño, J., Cámara-Martos, F. et al. Risk Assessment of Cd, Cu, and Pb from the consumption of hunted meat: red-legged partridge and wild rabbit. Biol Trace Elem Res 199, 1843–1854 (2021). https://doi.org/10.1007/s12011-020-02290-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02290-w

Keywords

  • Heavy metals
  • Small game
  • Meat consumption
  • Health risk
  • Red-legged partridge
  • Wild rabbit