Skip to main content

Advertisement

Log in

Ortho-silicic Acid Inhibits RANKL-Induced Osteoclastogenesis and Reverses Ovariectomy-Induced Bone Loss In Vivo

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 07 September 2020

This article has been updated

Abstract

Numerous experiments in vitro and in vivo have shown that an appropriate increase intake of silicon can facilitate the synthesis of collagen and its stabilization and promote the differentiation and mineralization of osteoblasts. In this study, we examined whether ortho-silicic acid restrains the differentiation of osteoclast through the receptor activator of nuclear factor κB ligand (RANKL)/receptor activator of nuclear factor κB (RANK)/osteoprotegerin (OPG) signaling pathway by investigating its effect in vitro and in vivo. Bone marrow macrophage (BMM) cells were isolated and cultured with or without ortho-silicic acid, and then TRAP staining and immunofluorescence were performed to detect the differentiation of osteoclast. The RANKL-induced osteoclast marker gene and protein expression including c-Fos, nuclear factor of activated T cells cl (NFATcl), tumor necrosis factor receptor-associated factor 6 (TRAF6), nuclear factor kappa B P50 (NF-κB P50), NF-κB P52, RANK, integrin β3, cathepsin K (CTSK), DC-STAMP, and TRAP were quantitatively detected by western blot and RT-PCR. Ovariectomized (OVX) rats were injected with ortho-silicic acid (OVX+Si group) and normal saline (OVX group), and sham-operated rats were injected with normal saline (Sham group). And micro-CT, H&E, and TRAP staining, ELISA, and western blot were performed. Ortho-silicic acid could inhibit the differentiation of osteoclast, and the marker genes and proteins were decreased. The OVX-induced bone loss could be reversed by ortho-silicic acid. Our finding demonstrated that ortho-silicic acid suppresses RANKL-induced osteoclastogenesis and has potential value as a therapeutic agent for OVX-induced bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available in the figshare repository. http://doi.org/https://doi.org/10.6084/m9.figshare.11671617.

Change history

References

  1. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342

    Article  CAS  Google Scholar 

  2. Chambers TJ (2000) Regulation of the differentiation and function of osteoclasts. J Pathol 192(1):4–13

    Article  CAS  Google Scholar 

  3. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(5484):1504–1508

    Article  CAS  Google Scholar 

  4. X Z, L N, Z X, Z J, X L, X W, X S, B H, P T, S S, A Q, Y M, L S, S F, S W (2019) The novel p38 inhibitor, pamapimod, inhibits osteoclastogenesis and counteracts estrogen-dependent bone loss in mice. J Bone Mineral Res 34(5):911–922. https://doi.org/10.1002/jbmr.3655

    Article  CAS  Google Scholar 

  5. H J, L Y, K C, Y L, Q W, Z W, Q L, Z C, J K, J T, X W, J X (2019) Evodiamine inhibits RANKL-induced osteoclastogenesis and prevents ovariectomy-induced bone loss in mice. J Cell Mol Med 23(1):522–534. https://doi.org/10.1111/jcmm.13955

    Article  CAS  Google Scholar 

  6. M A, H T (2007) The molecular understanding of osteoclast differentiation. Bone 40(2):251–264. https://doi.org/10.1016/j.bone.2006.09.023

    Article  CAS  Google Scholar 

  7. JH K, N K (2016) Signaling pathways in osteoclast differentiation. Chonnam medical journal 52(1):12–17. https://doi.org/10.4068/cmj.2016.52.1.12

    Article  CAS  Google Scholar 

  8. H T (2005) Mechanistic insight into osteoclast differentiation in osteoimmunology. J Molec Med (Berlin, Germany) 83(3):170–179. https://doi.org/10.1007/s00109-004-0612-6

    Article  CAS  Google Scholar 

  9. M K (2005) Inflammation-activated protein kinases as targets for drug development. Proc Am Thorac Soc 2(4):386–390; discussion 394-385. https://doi.org/10.1513/pats.200504-034SR

    Article  CAS  Google Scholar 

  10. Y K, C H, T N, K M, K M (2008) Osteoblasts induce Ca2+ oscillation-independent NFATc1 activation during osteoclastogenesis. Proc Natl Acad Sci U S A 105(25):8643–8648. https://doi.org/10.1073/pnas.0800642105

    Article  Google Scholar 

  11. N K, Y K, A N, K M, T Y, S T, J I (2001) Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 20(6):1271–1280. https://doi.org/10.1093/emboj/20.6.1271

    Article  Google Scholar 

  12. H T (2007) The role of NFAT in osteoclast formation. Ann N Y Acad Sci 1116:227–237. https://doi.org/10.1196/annals.1402.071

    Article  CAS  Google Scholar 

  13. F I, R N, T M, S T, J I, SV R, K H, K Y, T H, T W, T K, K Y, A R, T Y (2004) Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest 114(4):475–484. https://doi.org/10.1172/jci19657

    Article  Google Scholar 

  14. Rodella LF, Bonazza V, Labanca M, Lonati C, Rezzani R (2014) A review of the effects of dietary silicon intake on bone homeostasis and regeneration. J Nutr Health Aging 18(9):820–826. https://doi.org/10.1007/s12603-014-0484-6

    Article  CAS  PubMed  Google Scholar 

  15. MN W, SW H, T V, S R-P, JK L, GR B (2015) Bioactive silica nanoparticles reverse age-associated bone loss in mice. Nanomedicine 11(4):959–967. https://doi.org/10.1016/j.nano.2015.01.013

    Article  CAS  Google Scholar 

  16. TR C, CW B (2010) Silicon in beer and brewing. J Sci Food Agric 90(5):784–788. https://doi.org/10.1002/jsfa.3884

    Article  CAS  Google Scholar 

  17. K J, LN N, QH L, FM C, W Z, JJ L, JH C, CW C, DH P, FR T (2015) Biphasic silica/apatite co-mineralized collagen scaffolds stimulate osteogenesis and inhibit RANKL-mediated osteoclastogenesis. Acta Biomater 19:23–32. https://doi.org/10.1016/j.actbio.2015.03.012

    Article  CAS  Google Scholar 

  18. K S, M O, N S, TA B, MF G, V J, O K (2006) Dietary arginine silicate inositol complex improves bone mineralization in quail. Poult Sci 85(3):486–492. https://doi.org/10.1093/ps/85.3.486

    Article  Google Scholar 

  19. TD S, MR C, SH A, G C, L B, N D, R S, R J, DA B, JJ P (2008) Choline-stabilized orthosilicic acid supplementation as an adjunct to calcium/vitamin D3 stimulates markers of bone formation in osteopenic females: a randomized, placebo-controlled trial. BMC Musculoskelet Disord 9:85. https://doi.org/10.1186/1471-2474-9-85

    Article  CAS  Google Scholar 

  20. DM R, N O, R J, HF C, BA E, RP T, JJ P, GN H (2003) Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32(2):127–135. https://doi.org/10.1016/s8756-3282(02)00950-x

    Article  Google Scholar 

  21. M D, G J, H L, W W, S L, Q W, D X, X L, H L, Y C (2016) Biological silicon stimulates collagen type 1 and osteocalcin synthesis in human osteoblast-like cells through the BMP-2/Smad/RUNX2 signaling pathway. Biol Trace Elem Res 173(2):306–315. https://doi.org/10.1007/s12011-016-0686-3

    Article  CAS  Google Scholar 

  22. Mladenović Ž, Johansson A, Willman B, Shahabi K, Björn E, Ransjö M (2014) Soluble silica inhibits osteoclast formation and bone resorption in vitro. Acta Biomater 10(1):406–418. https://doi.org/10.1016/j.actbio.2013.08.039

    Article  CAS  PubMed  Google Scholar 

  23. Vahabzadeh S, Roy M, Bose S (2015) Effects of silicon on osteoclast cell mediated degradation, in vivo osteogenesis and vasculogenesis of brushite cement. J Mater Chem B 3(46):8973–8982. https://doi.org/10.1039/c5tb01081k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Costa-Rodrigues J, Reis S, Castro A, Fernandes MH (2016) Bone anabolic effects of soluble Si: in vitro studies with human mesenchymal stem cells and CD14+ osteoclast precursors. Stem Cells Int 2016:5653275–5653212. https://doi.org/10.1155/2016/5653275

    Article  CAS  PubMed  Google Scholar 

  25. R J, KL T, N Q, LA C, DP K, JJ P (2004) Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Mineral Res 19(2):297–307. https://doi.org/10.1359/jbmr.0301225

    Article  Google Scholar 

  26. VS L, S L (2013) Phytoestrogens in the prevention of postmenopausal bone loss. Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry 16(4):445–449. https://doi.org/10.1016/j.jocd.2013.08.011

    Article  Google Scholar 

  27. F G, MJ S, SZ G, JE M, GA C, FE S, WC W, CH H (1996) Prospective study of exogenous hormones and risk of pulmonary embolism in women. Lancet (London, England) 348(9033):983–987. https://doi.org/10.1016/s0140-6736(96)07308-4

    Article  Google Scholar 

  28. L B, I P (1996) Hormone replacement therapy and breast cancer. A review of current knowledge. Drug Saf 15(5):360–370. https://doi.org/10.2165/00002018-199615050-00006

    Article  Google Scholar 

  29. GA C, SE H, DJ H, WC W, JE M, MJ S, C H, B R, FE S (1995) The use of estrogens and progestins and the risk of breast cancer in postmenopausal women. N Engl J Med 332(24):1589–1593. https://doi.org/10.1056/nejm199506153322401

    Article  Google Scholar 

  30. KA K, MT D (2009) Adverse effects of bisphosphonates: implications for osteoporosis management. Mayo Clin Proc 84(7):632–637; quiz 638. https://doi.org/10.1016/s0025-6196(11)60752-0

    Article  Google Scholar 

  31. DL L, WJ B, WS S, PJ K, WC D, JK S, J SM, R D (2012) Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov 11(5):401–419. https://doi.org/10.1038/nrd3705

    Article  CAS  Google Scholar 

  32. MJ C, S S, YS F, T B, KA H, GW B (2011) The osteoinductivity of silicate-substituted calcium phosphate. J Bone Joint Surg Am 93(23):2219–2226. https://doi.org/10.2106/jbjs.I.01623

    Article  Google Scholar 

  33. J X, HF W, ES A, K Y, M W, MH Z, RX T (2009) NF-kappaB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev 20(1):7–17. https://doi.org/10.1016/j.cytogfr.2008.11.007

    Article  CAS  Google Scholar 

  34. NS S, N A (2009) NF-kappaB functions in osteoclasts. Biochem Biophys Res Commun 378(1):1–5. https://doi.org/10.1016/j.bbrc.2008.10.146

    Article  CAS  Google Scholar 

  35. K M, JM O, M T, C E, TJ C, EF W (2000) Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet 24(2):184–187. https://doi.org/10.1038/72855

    Article  CAS  Google Scholar 

  36. EF W, R E (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208:126–140. https://doi.org/10.1111/j.0105-2896.2005.00332.x

    Article  Google Scholar 

  37. M A, K S, T U, S O, H N, H Y, I M, EF W, TW M, E S, H T (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202(9):1261–1269. https://doi.org/10.1084/jem.20051150

    Article  CAS  Google Scholar 

  38. Q Z, X W, Y L, A H, R J (2010) NFATc1: functions in osteoclasts. Int J Biochem Cell Biol 42(5):576–579. https://doi.org/10.1016/j.biocel.2009.12.018

    Article  CAS  Google Scholar 

  39. N-K T, H T (2009) Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 231(1):241–256. https://doi.org/10.1111/j.1600-065X.2009.00821.x

    Article  Google Scholar 

  40. Sripanyakorn S, Jugdaohsingh R, Dissayabutr W, Anderson SH, Thompson RP, Powell JJ (2009) The comparative absorption of silicon from different foods and food supplements. Br J Nutr 102(6):825–834. https://doi.org/10.1017/s0007114509311757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hott M, de Pollak C, Modrowski D, Marie PJ (1993) Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats. Calcif Tissue Int 53(3):174–179. https://doi.org/10.1007/bf01321834

    Article  CAS  PubMed  Google Scholar 

  42. Eisinger J, Clairet D (1993) Effects of silicon, fluoride, etidronate and magnesium on bone mineral density: a retrospective study. Magnes Res 6(3):247–249

    CAS  PubMed  Google Scholar 

  43. Allain P, Cailleux A, Mauras Y, Renier JC (1983) Digestive absorption of silicon after a single administration in man in the form of methylsilanetriol salicylate. Therapie 38(2):171–174

    CAS  PubMed  Google Scholar 

  44. R J, M H, SH A, SD K, JJ P (2013) The silicon supplement ‘monomethylsilanetriol’ is safe and increases the body pool of silicon in healthy pre-menopausal women. Nutrition & metabolism 10(1):37. https://doi.org/10.1186/1743-7075-10-37

    Article  CAS  Google Scholar 

  45. Kim MH, Bae YJ, Choi MK, Chung YS (2009) Silicon supplementation improves the bone mineral density of calcium-deficient ovariectomized rats by reducing bone resorption. Biol Trace Elem Res 128(3):239–247. https://doi.org/10.1007/s12011-008-8273-x

    Article  CAS  PubMed  Google Scholar 

  46. Kayongo-Male H, Julson JL (2008) Effects of high levels of dietary silicon on bone development of growing rats and turkeys fed semi-purified diets. Biol Trace Elem Res 123(1–3):191–201. https://doi.org/10.1007/s12011-008-8102-2

    Article  CAS  PubMed  Google Scholar 

  47. H C, M K, G J, W W, H Z, L C, Y Q, H W, W M, Y C (2019) The role of orthosilicic acid-induced autophagy on promoting differentiation and mineralization of osteoblastic cells. J Biomater Appl 34(1):94–103. https://doi.org/10.1177/0885328219837700

    Article  CAS  Google Scholar 

  48. H Z, G J, M D, H C, H W, W W, H L, S R, M K, C L, L Z, Y C (2019) Orthosilicic acid accelerates bone formation in human osteoblast-like cells through the PI3K-Akt-mTOR pathway. Biol Trace Elem Res 190(2):327–335. https://doi.org/10.1007/s12011-018-1574-9

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support from the Department of Science and Technology of Shandong Province (2017GSF18160), Shandong Province Medical and Health Science and Technology Development Plan (2018WS328), and Qilu Hospital Youth Fund (2017QLQN05).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Wenzheng Ma; data curation: Hai Chi; formal analysis: Wenliang Wu; funding acquisition: Yunzhen Chen and Wenliang Wu; investigation: Lu Zhang; methodology: Wenzheng Ma, Fu’an Wang, and Yunhao You; project administration: Yunzhen Chen; resources: Hongming Zhou; software: Guangjun Jiao; supervision: Yunzhen Chen; validation: Hongliang Wang; writing – original draft: Wenzheng Ma; writing – review and editing: Fu’an Wang

Corresponding author

Correspondence to Yunzhen Chen.

Ethics declarations

All animal experiments were performed in accordance with the principles and procedures of the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals and the guidelines for the animal treatment of Qilu Hospital of Shandong University (Jinan, China).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article unfortunately contained a mistake. The name of “Yunzhen Chen” is now corrected in the author group.

Summary Statement

Our study showed that with the presence of ortho-silicic acid, the differentiation of osteoclasts was suppressed and the OVX-induced bone loss was also inhibited and these findings may shed new light on the prevention and treatment of osteoporosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Wang, F., You, Y. et al. Ortho-silicic Acid Inhibits RANKL-Induced Osteoclastogenesis and Reverses Ovariectomy-Induced Bone Loss In Vivo. Biol Trace Elem Res 199, 1864–1876 (2021). https://doi.org/10.1007/s12011-020-02286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02286-6

Keywords