Skip to main content

Advertisement

Log in

Estimation of Trace Elements, Antioxidants, and Antibacterial Agents of Regularly Consumed Indian Medicinal Plants

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nutritional profile of minerals and antioxidants in Indian spice extracts was evaluated in order to examine their efficacy in treating various diseases, disorders, and allergies in human health. Extracts of four medicinal plants such as Curcuma longa, Zingiber officinale, Piper nigrum, and Piper longum, regularly consumed as spice products in South Asia, have been studied using elemental analysis, antioxidant, and antibacterial studies. While potassium (K) and calcium (Ca) were estimated to be the major elements, trace elements such as manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), and lead (Pb) were determined in the plant extracts. Although higher concentration of Cu was estimated in Piper nigrum extracts, it can be inferred that Cu is not the only factor that is responsible for gastrointestinal disorders. Methanolic extract of the plants showed the highest inhibition zone for Curcuma longa against maximum bacterial strains while Zingiber officinale showed inhibition against S. aureus, K. pneumonia, and P. aeruginosa. Because of the highest concentration of antioxidants and inhibitory action against most of the bacterial strains, Curcuma longa can be used as a co-therapeutic agent in healing gastrointestinal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhattacharya PT et al. (2016) Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica. 5464373

  2. Falah SA, Mohssan SN (2017) Essential trace elements and their roles in human body. Ind J Adv Chem Sci 5(3):127–136

    Google Scholar 

  3. Connie WB, Christine SR (2009) Handbook of clinical nutrition and ageing. Springer, New York, p 151

    Google Scholar 

  4. Sofowora A et al (2013) The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med 10:210–229

    PubMed  PubMed Central  Google Scholar 

  5. Rakshit M, Ramalingam C (2010) Health benefits of spices with special reference to antimicrobial activity and bio active components. J Exp Sci 1:12–18

    Google Scholar 

  6. Rautray TR, Vijayan V, Sudarshan M, Panigrahi S (2009) Analysis of blood and tissue in gallbladder cancer. Nucl Instrum Methods B 267:2878–2883

    CAS  Google Scholar 

  7. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    PubMed  PubMed Central  Google Scholar 

  8. Ashok M, Rautray TR, Nayak PK, Vijayan V, Jayanthi V, Narayana Kalkura S (2003) Energy dispersive X-ray fluorescence analysis of gallstones. J Radioanal Nucl Chem 257:333–335

    CAS  Google Scholar 

  9. Vijayan V, Behera SN, Ramamurthy VS, Puri S, Shahi JS, Singh N (1997) Elemental composition of fly ash from a coal-fired thermal power plant – a study using PIXE and EDXRF. X-Ray Spectrom 26:65–68

    CAS  Google Scholar 

  10. Miladi H, Zmantar T, Chaabouni Y, Fedhila K, Bakhrouf A, Mahdouani K, Chaieb K (2016) Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb Pathog 99:95–100

    CAS  PubMed  Google Scholar 

  11. Brul S, Coote P (1999) Preservative agents in foods. Mode of action and microbial resistance mechanisms. Int J Food Microbiol 50:1–17

    CAS  PubMed  Google Scholar 

  12. De Souza EL et al (2005) Antimicrobial effectiveness of spices: an approach for use in food conservation systems. Braz Arch Biol Technol 48:549–558

    Google Scholar 

  13. Silva F, Domingues FC (2017) Antimicrobial activity of coriander oil and its effectiveness as food preservative. Crit Rev Food Sci Nutr 57:35–47

    CAS  PubMed  Google Scholar 

  14. Tajkarimi MM, Ibrahim SA, Cliver DO (2010) Antimicrobial herb and spice compounds in food. Food Control 21:1199–1218

    CAS  Google Scholar 

  15. Parthasarathy VA et al (2008) Chemistry of spices, first ed. CABI, Oxfordshire

    Google Scholar 

  16. Charles DJ (2013) Antioxidant properties of spices, herbs and other sources. Springer, New York

    Google Scholar 

  17. Choi IS et al (2014) Physicochemical and antioxidant properties of black garlic. Molecules. 19:16811–16823

    PubMed  PubMed Central  Google Scholar 

  18. Gounder DK, Lingmallu J (2012) Comparison of chemical composition and antioxidant potential of volatile oil from fresh dried and cured turmeric (Curcuma longa) rhizomes. Ind Crop Prod 38:124–131

    Google Scholar 

  19. Atashak S, Peeri M, Azarbayjani MA, Stannard SR (2014) Effects of ginger (Zingiber officinale Roscoe) supplementation and resistance training on some blood oxidative stress markers in obese men. J Exerc Sci Fit 12:26–30

    Google Scholar 

  20. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  21. Sharma P et al (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Aust J Bot 2012:217037

    Google Scholar 

  22. Yusuf AA, Lawal B, Abubakar AN, Berinyuy EB, Omonije YO, Umar SI, Shebe MN, Alhaji YM (2018) In-vitro antioxidants, antimicrobial and toxicological evaluation of Nigerian Zingiber officinale. J Clin Phytosci 4:12

    Google Scholar 

  23. Rautray TR, Dutta K, Das SL, Rautray AC (2010) In situ analyses of gallstone inner layers by external PIXE. Nucl Instrum Methods B 268:2773–2776

    CAS  Google Scholar 

  24. Vijayan V et al (2003) External particle-induced X-ray emission. Curr Sci 85:772–777

    CAS  Google Scholar 

  25. Rautray TR, Das S, Rautray AC (2010a) In situ analysis of human teeth by external PIXE. Nucl Instrum Methods B. 268:2371–2374

    CAS  Google Scholar 

  26. Rautray TR, Vijayan V, Panigrahi S (2007) Analysis of Indian pigment gallstones. Nucl Instrum Methods B 255:409–415

    CAS  Google Scholar 

  27. Vijayan V, Rautray TR, Nayak PK, Basa DK (2005) Studies on the composition of ancient Indian punch-marked silver coins. X-Ray Spectrom 34:128–130

    CAS  Google Scholar 

  28. Rath S, Padhy RN (2013) Monitoring in vitro antibacterial efficacy of Terminalia alata Heyne ex. Roth, against MDR enteropathogenic bacteria isolated from clinical samples. J Acute Med 3:93–102

    Google Scholar 

  29. Gleerup A, Rossander-Hulthén L, Gramatkovski E, Hallberg L (1995) Iron absorption from the whole diet: comparison of the effect of two different distributions of daily calcium intake. Am J Clin Nutr 61:97–104

    CAS  PubMed  Google Scholar 

  30. Sandström B, Fairweather-Tait S, Hurrell R, van Dokkum W (1993) Methods for studying mineral and trace element absorption in humans using stable isotopes. Nutr Res Rev 6:71–95

    PubMed  Google Scholar 

  31. Sandstrom B (1997) Bioavailability of zinc. Eur J Clin Nutr 51:S17–S19

    PubMed  Google Scholar 

  32. Spitalny KC, Brondum J, Vogt RL, Sargent HE, Kappel S (1984) Drinking-water-induced copper intoxication in a Vermont family. Pediatrics. 74:1103–1106

    CAS  PubMed  Google Scholar 

  33. Knobeloch L, Ziarnik M, Howard J, Theis B, Farmer D, Anderson H, Proctor M (1994) Gastrointestinal upsets associated with ingestion of copper-contaminated water. Environ Health Perspect 102:958–961

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ip C, Sinha DK (1981) Enhancement of mammary tumorigenesis by dietary selenium deficiency in rats with a high polyunsaturated fat intake. Cancer Res 41:31–34

    CAS  PubMed  Google Scholar 

  35. Levander OA (1987) A global view of human selenium nutrition. Annu Rev Nutr 7:227–250

    CAS  PubMed  Google Scholar 

  36. Birt DF, Pour PM, Pelling JC (1989) The influence of dietary selenium on colon, pancreas and skin tumorigenesis. In: Wendel A (ed) Selenium in biology and medicine. Springer-Verlag, Berlin, pp 297–304

    Google Scholar 

  37. Morris JS, Schmid M, Newman S, Scheuer PJ, Sherlock S (1974) Arsenic and noncirrhotic portal hypertension. Gastroenterol. 66:86–94

    CAS  Google Scholar 

  38. Nevens F, Fevery J, van Steenbergen W, Sciot R, Desmet V, de Groote J (1990) Arsenic and non-cirrhotic portal hypertension. A report of eight cases. J Hepatol 11:80–85

    CAS  PubMed  Google Scholar 

  39. Jayanthi V et al (2005) Dietary factors in pathogenesis of gallstone disease in southern India - a hospital-based case-control study. Indian J Gastroenterol 24:97–99

    CAS  PubMed  Google Scholar 

  40. Revathi S, Malathy NS (2013) Antibacterial activity of rhizome of Curcuma aromatica and partial purification of active compounds. Indian J Pharm Sci 75:732–735

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bordoloi AK, Sperkova J, Leclercq PA (1999) Essential oils of Curcuma aromatica Salisb from Northeast India. J Essent Oil Res 11:537–540

    CAS  Google Scholar 

  42. Smith-Palmer A, Stewart J, Fyfe L (1998) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26:118–122

    CAS  PubMed  Google Scholar 

  43. Akgul A, Kivanc M (1989) Growth of Staphylococcus aureus in kofte, a Turkish ground meat product, containing laser trilobum spice. J Food Saf 10:11–19

    Google Scholar 

  44. Konning GH, Agyare C, Ennison B (2004) Antimicrobial activity of some medicinal plants from Ghana. Fitoterapia. 75:65–67

    CAS  PubMed  Google Scholar 

  45. Walker R (1999) Clinical pharmacy and therapeutics, second ed. Churchill Livingstone

  46. Onyeagba R et al (2004) Studies on the antimicrobial effects of garlic (Allium sativum Linn), ginger (Zingiber officinale Roscoe) and lime (Citrus aurantifolia Linn). Afr J Biotechnol 3:552–554

    Google Scholar 

  47. Abdalla AE, Roozen JP (1999) Effect of plant extracts on the oxidative stability of sunflower oil and emulsion. Food Chem 64:323–329

    CAS  Google Scholar 

  48. Kaplan M, Mutlu EA, Benson M, Fields JZ, Banan A, Keshavarzian A (2007) Use of herbal preparations in the treatment of oxidant-mediated inflammatory disorders. Complement Ther Med 15:207–216

    PubMed  Google Scholar 

  49. Stoilova I et al (2007) Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem 102:764–770

    CAS  Google Scholar 

  50. Tapal A, Tiku PK (2012) Complexion of curcumin with soy protein isolate and its implications on solubility and stability of curcumin. Food Chem 130:960–965

    CAS  Google Scholar 

  51. Yadav NP, Dixit VK (2008) Recent approaches in herbal drug standardization. Int J Integr Biol 2:195–203

    CAS  Google Scholar 

  52. Zaveri M, Dhru B (2010) In-vitro antioxidant potential of stem and root bark of Oroxylum indicum. J Global Pharm Technol 2:975–8542

    Google Scholar 

  53. Ahmad I, Mehmood Z, Mohammad F (1998) Screening of some Indian medicinal plants for their antimicrobial properties. J Ethnopharmacol 62:183–193

    CAS  PubMed  Google Scholar 

  54. Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89:217–233

    CAS  Google Scholar 

  55. Cioroi M, Dumitriu D (2009) Studies on total polyphenols content and antioxidant activity of aqueous extracts from selected Lamiaceae spices. Ann. Univ. Dunarea. de Jos Galati, Romania, Fascicle-Food Technol 34, 42–46

  56. Newerli-Guz J (2012) Przeciwutleniające właściwości majeranku ogrodowego Origanum majora L. Problemy Higieny i Epidemiologii 93:834–837

    Google Scholar 

  57. Wojdylo A et al (2007) Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 105:940–949

    CAS  Google Scholar 

  58. Su L, Yin JJ, Charles D, Zhou K, Moore J, Yu L(L) (2007) Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem 100:990–997

    CAS  Google Scholar 

  59. Gutteridge JM et al (1998) Phagomimetic action of antimicrobial agents. Free Radic Res 28:1–14

    CAS  PubMed  Google Scholar 

  60. Stadtman ER (2004) Role of oxidant species in aging. Curr Med Chem 11:1105–1112

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapash R. Rautray.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, S., Rautray, T.R. Estimation of Trace Elements, Antioxidants, and Antibacterial Agents of Regularly Consumed Indian Medicinal Plants. Biol Trace Elem Res 199, 1185–1193 (2021). https://doi.org/10.1007/s12011-020-02228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02228-2

Keywords

Navigation