Skip to main content

Is Zinc an Important Trace Element on Bone-Related Diseases and Complications? A Meta-analysis and Systematic Review from Serum Level, Dietary Intake, and Supplementation Aspects

Abstract

Bone-related diseases are very common problems, especially in the elderly population. Zinc takes part in the growth and maintenance of healthy bones. This meta-analysis aims to evaluate the effects of zinc supplementation or dietary zinc intake on serum zinc levels and bone turnover markers. A systematical research was performed with 2899 articles in PubMed, WoS, and Scopus for relevant articles in English which have mean/standard deviation values of serum zinc levels, dietary zinc intake/zinc supplementation (mg/day), and bone turnover markers up to February 2020. In the overall analysis, serum zinc level was significantly lower in patients with osteoporosis compared with controls (p 0.0002). Dietary zinc intake decreased in the fracture group compared with controls according to subgroup analysis patients with fracture (p 0.02). Zinc supplementation was effective on the femoral neck (p < 0.0001) and lumbar spine (p 0.05) bone mineral density (BMD). In the correlation analysis of the data obtained from all of the included studies, serum osteocalcin (p 0.0106, r − 0.9148) correlated with serum zinc level. In conclusion, serum zinc level and dietary zinc intake could have an essential role in preventing osteoporosis. Zinc supplementation might improve bone turnover markers for bone formation such as serum osteocalcin and serum alkaline phosphatase and also, BMD at the site of the femoral neck.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bayliss L, Mahoney DJ, Monk P (2012) Normal bone physiology, remodelling and its hormonal regulation. Surgery 30(2):47–53

    Google Scholar 

  2. Cashman KD (2007) Diet, nutrition, and bone health. J Nutr 137(11):2507S–2512S

    CAS  PubMed  Google Scholar 

  3. Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194(2):S3–S11

    CAS  PubMed  Google Scholar 

  4. Mutlu M, Argun M, Kilic E, Saraymen R, Yazar S (2007) Magnesium, zinc and copper status in osteoporotic, osteopenic and normal post-menopausal women. J Int Med Res 35(5):692–695

    CAS  PubMed  Google Scholar 

  5. Dai Z, Wang R, Ang L, Yuan J-M, Koh W-P (2013) Dietary B vitamin intake and risk of hip fracture: the Singapore Chinese Health Study. Osteoporos Int 24(7):2049–2059

    CAS  PubMed  Google Scholar 

  6. Ilich J, Brownbill R, Tamborini L (2003) Bone and nutrition in elderly women: protein, energy, and calcium as main determinants of bone mineral density. Eur J Clin Nutr 57(4):554–565

    CAS  PubMed  Google Scholar 

  7. Mahdavi-Roshan M, Ebrahimi M, Ebrahimi A (2015) Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women. Clin Cases Miner Bone Metab 12(1):18–21

    PubMed  PubMed Central  Google Scholar 

  8. Yamaguchi M (2007) Role of zinc in bone metabolism and preventive effect on bone disorder. Biomed Res Trace Elem 18(4):346–366

    CAS  Google Scholar 

  9. Kambe T, Tsuji T, Hashimoto A, Itsumura NJ (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiological reviews 95(3):749–784

  10. Kenkre J, Bassett J (2018) The bone remodelling cycle. Ann Clin Biochem 55(3):308–327

    CAS  PubMed  Google Scholar 

  11. Yamaguchi M (2010) Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem 338(1-2):241–254

    CAS  PubMed  Google Scholar 

  12. Yamaguchi M, Uchiyama S (2004) Receptor activator of NF-κB ligand-stimulated osteoclastogenesis in mouse marrow culture is suppressed by zinc in vitro. Int J Mol Med 14(1):81–85

    CAS  PubMed  Google Scholar 

  13. Shiota J, Tagawa H, Izumi N, Higashikawa S, Kasahara H (2015) Effect of zinc supplementation on bone formation in hemodialysis patients with normal or low turnover bone. Ren Fail 37(1):57–60

    CAS  PubMed  Google Scholar 

  14. Peretz A, Papadopoulos T, Willems D, Hotimsky A, Michiels N, Siderova V, Bergmann P, Neve J (2001) Zinc supplementation increases bone alkaline phosphatase in healthy men. J Trace Elem Med Biol 15(2–3):175–178

    CAS  PubMed  Google Scholar 

  15. de Luis RD, Aller R, Castrillon JP, De Luis J, Sagrado MG, Izaola O, Romero E, Escudero JM, Herreros V (2004) Effects of dietary intake and life style on bone density in patients with diabetes mellitus type 2. Ann Nutr Metab 48(3):141–145

    PubMed  Google Scholar 

  16. Elmståhl S, Gullberg B, Janzon L, Johnell O, Elmståhl B (1998) Increased incidence of fractures in middle-aged and elderly men with low intakes of phosphorus and zinc. Osteoporos Int 8(4):333–340

    PubMed  Google Scholar 

  17. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. Bmj 327(7414):557–560

    PubMed  PubMed Central  Google Scholar 

  18. Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2009) Fixed-effect versus random-effects models. Introduction to Meta-analysis, 77–85

  19. Higgins JP (2011) Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. https://www.cochrane-handbook.org

  20. Arikan DC, Coskun A, Ozer A, Kilinc M, Atalay F, Arikan T (2011) Plasma selenium, zinc, copper and lipid levels in postmenopausal Turkish women and their relation with osteoporosis. Biol Trace Elem Res 144(1–3):407–417

    CAS  PubMed  Google Scholar 

  21. Braam L, Knapen M, Geusens P, Brouns F, Hamulyak K, Gerichhausen M, Vermeer C (2003) Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 years of age. Calcif Tissue Int 73(1):21–26

    CAS  PubMed  Google Scholar 

  22. Candan F, Gültekin F, Candan F (2002) Effect of vitamin C and zinc on osmotic fragility and lipid peroxidation in zinc-deficient haemodialysis patients. Cell Biochem Funct 20(2):95–98

    CAS  PubMed  Google Scholar 

  23. Canhao H, Fonseca JE, Caetano-Lopes J, Saldanha C, Queiroz MV (2008) Assessment of laboratory measurements and− 308 TNFα gene promoter polymorphisms in normal bone mineral density. Clin Rheumatol 27(3):301–307

    PubMed  Google Scholar 

  24. Gunn C, Weber J, Kruger M (2014) Diet, weight, cytokines and bone health in postmenopausal women. J Nutr Health Aging 18(5):479–486

    CAS  PubMed  Google Scholar 

  25. Gür A, Çolpan L, Nas K, Çevik R, Saraç J, Erdoğan F, Düz MZ (2002) The role of trace minerals in the pathogenesis of postmenopausal osteoporosis and a new effect of calcitonin. J Bone Miner Metab 20(1):39–43

    PubMed  Google Scholar 

  26. Farrell VA, Harris M, Lohman TG, Going SB, Thomson CA, Weber JL, Houtkooper LB (2009) Comparison between dietary assessment methods for determining associations between nutrient intakes and bone mineral density in postmenopausal women. J Am Diet Assoc 109(5):899–904

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hyun TH, Barrett-Connor E, Milne DB (2004) Zinc intakes and plasma concentrations in men with osteoporosis: the Rancho Bernardo Study. Am J Clin Nutr 80(3):715–721

    CAS  Google Scholar 

  28. Ilich JZ, Cvijetic S, Baric IC, Cecic I, Saric M, Crncevic-Orlic Z, Blanusa M, Korsic M (2009) Nutrition and lifestyle in relation to bone health and body weight in Croatian postmenopausal women. Int J Food Sci Nutr 60(4):319–332

    CAS  PubMed  Google Scholar 

  29. Jensen C, Holloway L, Block G, Spiller G, Gildengorin G, Gunderson E, Butterfield G, Marcus R (2002) Long-term effects of nutrient intervention on markers of bone remodeling and calciotropic hormones in late-postmenopausal women. Am J Clin Nutr 75(6):1114–1120

    CAS  PubMed  Google Scholar 

  30. Kadam N, Chiplonkar S, Khadilkar A, Divate U, Khadilkar V (2010) Low bone mass in urban Indian women above 40 years of age: prevalence and risk factors. Gynecol Endocrinol 26(12):909–917

    PubMed  Google Scholar 

  31. Kamp F, Donangelo CM (2008) Supplementing young women with both zinc and iron protects zinc-related antioxidant indicators previously impaired by iron supplementation. J Nutr 138(11):2186–2189

    CAS  PubMed  Google Scholar 

  32. Kim M-H, Choi M-K, Sung C-J (2007) Bone mineral density of Korean postmenopausal women is similar between vegetarians and nonvegetarians. Nutr Res 27(10):612–617

    CAS  Google Scholar 

  33. Geinoz G, Rapin C-H, Rizzoli R, Kraemer R, Buchs B, Slosman D, Michel J, Bonjour J (1993) Relationship between bone mineral density and dietary intakes in the elderly. Osteoporos Int 3(5):242–248

    CAS  PubMed  Google Scholar 

  34. Krebs J, Schneider V, LeBlanc A (1988) Zinc, copper, and nitrogen balances during bed rest and fluoride supplementation in healthy adult males. Am J Clin Nutr 47(3):509–514

    CAS  PubMed  Google Scholar 

  35. Kruger MC, Schollum LM, Kuhn-Sherlock B, Hestiantoro A, Wijanto P, Li-Yu J, Agdeppa I, Todd JM, Eastell R (2010) The effect of a fortified milk drink on vitamin D status and bone turnover in post-menopausal women from South East Asia. Bone 46(3):759–767

    CAS  PubMed  Google Scholar 

  36. Kruger MC, Chan YM, Kuhn-Sherlock B, Lau LT, Lau C, Chin Y, Todd JM, Schollum LM (2016) Differential effects of calcium- and vitamin D-fortified milk with FOS-inulin compared to regular milk, on bone biomarkers in Chinese pre-and postmenopausal women. Eur J Nutr 55(5):1911–1921

    CAS  PubMed  Google Scholar 

  37. Li SK, Wan MM, Siu FP, Chung S, Pang MY (2017) Relationship between nutritional factors and hip bone density in individuals with chronic stroke. Calcif Tissue Int 101(3):259–270

    CAS  PubMed  Google Scholar 

  38. Lim H, Kim HJ, Hong SJ, Kim S (2014) Nutrient intake and bone mineral density by nutritional status in patients with inflammatory bowel disease. J Bone Metab 21(3):195–203

    PubMed  PubMed Central  Google Scholar 

  39. Liu S-Z, Yan H, Xu P, Li J-P, Zhuang G-H, Zhu B-F, Lu S-M (2009) Correlation analysis between bone mineral density and serum element contents of postmenopausal women in Xi’an urban area. Biol Trace Elem Res 131(3):205–214

    CAS  PubMed  Google Scholar 

  40. Mahdaviroshan M, Golzarand M, Taramsari MR, Mahdaviroshan M (2013) Effect of zinc supplementation on serum zinc and calcium levels in postmenopausal osteoporotic women in Tabriz, Islamic Republic of Iran. East Mediterr Health J 19(3):271–275

    PubMed  Google Scholar 

  41. New SA, Bolton-Smith C, Grubb DA, Reid DM (1997) Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr 65(6):1831–1839

    CAS  PubMed  Google Scholar 

  42. Nielsen F, Milne D (2004) A moderately high intake compared to a low intake of zinc depresses magnesium balance and alters indices of bone turnover in postmenopausal women. Eur J Clin Nutr 58(5):703–710

    CAS  PubMed  Google Scholar 

  43. Nielsen FH, Lukaski HC, Johnson LK, Roughead ZF (2011) Reported zinc, but not copper, intakes influence whole-body bone density, mineral content and T score responses to zinc and copper supplementation in healthy postmenopausal women. Br J Nutr 106(12):1872–1879

    CAS  PubMed  Google Scholar 

  44. Okyay E, Ertugrul C, Acar B, Sisman AR, Onvural B, Ozaksoy D (2013) Comparative evaluation of serum levels of main minerals and postmenopausal osteoporosis. Maturitas 76(4):320–325

    CAS  PubMed  Google Scholar 

  45. Relea P, Revilla M, Ripoll E, Arribas I, Villa L, Rico H (1995) Zinc, biochemical markers of nutrition, and type I osteoporosis. Age Ageing 24(4):303–307

    CAS  PubMed  Google Scholar 

  46. Rodondi A, Ammann P, Ghilardi-Beuret S, Rizzoli R (2009) Zinc increases the effects of essential amino acids-whey protein supplements in frail elderly. J Nutr Health Aging 13(6):491–497

    CAS  PubMed  Google Scholar 

  47. Sadighi A, Roshan MM, Moradi A, Ostadrahimi A (2008) The effects of zinc supplementation on serum zinc, alkaline phosphatase activity and fracture healing of bones. Saudi Med J 29(9):1276–1279

    PubMed  Google Scholar 

  48. Samieri C, Coupez GV, Lorrain S, Letenneur L, Allès B, Féart C, Paineau D, Barberger-Gateau P (2012) Nutrient patterns and risk of fracture in older subjects: results from the Three-City Study. Osteoporos Int 24:1295–1305

  49. Andriollo-Sanchez M, Hininger-Favier I, Meunier N, Toti E, Zaccaria M, Brandolini-Bunlon M, Polito A, O'Connor JM, Ferry M, Coudray C, Roussel A M (2005) Zinc intake and status in middle-aged and older European subjects: the ZENITH study. European journal of clinical nutrition 59(2): S37–S41

  50. Strause L, Saltman P, Smith KT, Bracker M, Andon MB (1994) Spinal bone loss in postmenopausal women supplemented with calcium and trace minerals. J Nutr 124(7):1060–1064

    CAS  Google Scholar 

  51. Sugiyama TTH, Kawai S (2000) Improvement of periarticular osteoporosis in postmenopausal women with rheumatoid artritis by beta-alanyl-l-histidinato zinc: a pilot study. J Bone Miner Metab 18(6):335–338

    CAS  PubMed  Google Scholar 

  52. Sun LLLB, Xie HL, Fan F, Yu WZ, Wu BH, Xue WQ, Chen YM (2014) Associations between the dietary intake of antioxidant nutrients and the risk of hip fracture in elderly Chinese: a case–control study. Br J Nutr 112(10):1706–1714

    CAS  PubMed  Google Scholar 

  53. Zhou YAD, Dixon PM, Messina M, Reddy MB (2011) The effect of soy food intake on mineral status in premenopausal women. J Women's Health (Larchmt) 20(5):771–780

    Google Scholar 

  54. Zheng J, Mao X, Ling J, He Q, Quan J (2014) Low serum levels of zinc, copper, and iron as risk factors for osteoporosis: a meta-analysis. Biol Trace Elem Res 160(1):15–23

    CAS  PubMed  Google Scholar 

  55. Hess SY, Peerson JM, King JC, Brown KH (2007) Use of serum zinc concentration as an indicator of population zinc status. Food Nutr Bull 28(3_suppl3):S403–S429

    PubMed  Google Scholar 

  56. King JC, Shames DM, Woodhouse LR (2000) Zinc homeostasis in humans. J Nutr 130(5):1360S–1366S

    CAS  PubMed  Google Scholar 

  57. Karaaslan FMM, Mermerkaya MU, Karaoğlu S, Saçmaci Ş, Kartal Ş (2014) Comparison of bone tissue trace-element concentrations and mineral density in osteoporotic femoral neck fractures and osteoarthritis. Clin Interv Aging 18(9):1375–1382

    Google Scholar 

  58. Qi S, He J, Zheng H, Chen C, Jiang H, & Lan S (2020) Zinc Supplementation Increased Bone Mineral Density, Improves Bone Histomorphology, and Prevents Bone Loss in Diabetic Rat. Biological Trace Element Research 194(2):493–501

  59. Li BLH, Jia S (2014) Zinc enhances bone metabolism in ovariectomized rats and exerts anabolic osteoblastic/adipocytic marroweffects ex vivo. Biol Trace Elem Res 163:202–207

    PubMed  Google Scholar 

  60. Bhardwaj PRD, Garg ML (2013) Zinc as a nutritional approach to bone loss prevention in an ovariectomized rat model. Menopause 20:1184–1193

    PubMed  Google Scholar 

  61. Shanshan Q (2018) Synergistic effects of genistein and zinc on bone metabolism and the femoral metaphyseal histomorphology in the ovariectomized rats. Biol Trace Elem Res 183:288–295

    Google Scholar 

  62. Li XSY, Ito A (2009) The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo. Mater Sci Eng 29:969–975

    CAS  Google Scholar 

  63. Suzuki TKS, Matsuzaki H, Suzuki K (2016) A shortterm zinc-deficient diet decreases bone formation through downregulated BMP 2 in rat bone. Biosci Biotechnol Biochem 24:1–3

    Google Scholar 

  64. Woitge H, Seibel M, Ziegler R (1996) Comparison of total and bone-specific alkaline phosphatase in patients with nonskeletal disorder or metabolic bone diseases. Clin Chem 42(11):1796–1804

    CAS  PubMed  Google Scholar 

  65. Roudsari JM, Mahjoub S (2012) Quantification and comparison of bone-specific alkaline phosphatase with two methods in normal and Paget’s specimens. Caspian J Intern Med 3(3):478

    CAS  Google Scholar 

  66. Cho Y-E, Lomeda R-AR, Ryu S-H, Sohn H-Y, Shin H-I, Beattie JH, Kwun I-S (2007) Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats. Nutr Res Pract 1(2):113–119

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kalaiselvi V, Prabhu K, Mani Ramesh VV (2013) The association of serum osteocalcin with the bone mineral density in post menopausal women. J Clin Diagn Res 7(5):814

    Google Scholar 

  68. Gurban C, Tanasie G, Gotia S, Cornianu M, Glaja R, Faur A, Anghel S, Ceacli C (2007) Osteocalcin and estradiol markers of bone cells in postmenopausal osteoporosis. Physiology 17(4):273–282

    Google Scholar 

  69. Rahnama M, Jastrzębska-Jamrogiewicz I, Jamrogiewicz R, Trybek G (2015) Analysis of the influence of hormone replacement therapy on osteocalcin gene expression in postmenopausal women. Biomed Res Int 2015:1–8

    Google Scholar 

  70. Singh S, Kumar D, Lal AK (2015) Serum osteocalcin as a diagnostic biomarker for primary osteoporosis in women. J Clin Diagn Res 9(8):RC04–RC07

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Li BLH, Jia S (2015) Zinc enhances bone metabolism in ovariectomized rats and exerts anabolic osteoblastic/adipocytic marrow effects ex vivo. Biol Trace Elem Res 63(1–2):202–207

    Google Scholar 

  72. Iitsuka NHM, Tsukamoto I (2013) Zinc supplementation inhibits the increase in osteoclastogenesis and decrease in osteoblastogenesis in streptozotocin-induced diabetic rats. Eur J Pharmacol 4(1–3):41–47

    Google Scholar 

  73. Nagata MLB (2011) Role of zinc in cellular zinc trafficking and mineralization in a murine osteoblast-like cell line. J Nutr Biochem 22(2):172–178

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuray Yazihan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

None

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ceylan, M.N., Akdas, S. & Yazihan, N. Is Zinc an Important Trace Element on Bone-Related Diseases and Complications? A Meta-analysis and Systematic Review from Serum Level, Dietary Intake, and Supplementation Aspects. Biol Trace Elem Res 199, 535–549 (2021). https://doi.org/10.1007/s12011-020-02193-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02193-w

Keywords

  • Bone
  • Diet
  • Fracture
  • Osteopenia
  • Osteoporosis
  • Zinc