Skip to main content
Log in

Association of Circulating and Aortic Zinc and Copper Levels with Clinical Abdominal Aortic Aneurysm: a Meta-analysis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

It remains obscure whether circulating aortic zinc (Zn) and copper (Cu) levels are associated with the progress of human abdominal aortic aneurysms (AAA). Therefore, we conducted a meta-analysis to explore this relationship. A literature search on circulating and aortic zinc and copper levels and AAA patients was conducted using online databases including PubMed, Embase, and Cochrane up to March 20, 2019. To compare Zn and Cu concentrations in AAA patients with those in aortic occlusive disease (AOD) patients or healthy aorta donors or healthy blood donors, pooled weighted mean difference (WMD) and its 95% confidence interval (CI) were calculated. Subgroup analysis, sensitivity analysis, and meta-regression analysis were applied to explain the heterogeneity and evaluate the robustness of combined results. A total of 10 cross-sectional studies, including 252 cases and 304 controls, were used for meta-analysis. We found that circulating zinc and Zn/Cu ratio in AAA patients were significantly lower [WMD (95%CI): − 2.23 (− 4.10, − 0.36); − 0.18 (− 0.31, − 0.05), respectively] than those in non-AAA patients. Similarly, aneurysmal aorta had significantly lower zinc levels and Zn/Cu ratio [WMD (95%CI): − 9.22 (− 15.37, − 3.07); − 6.46 (− 10.14, − 2.77), respectively] than those in control group. No difference in circulating or aortic copper levels was noted between AAA patients and control group [WMD (95%CI): - 0.24 (- 2.09, 1.61); 0.30 (- 0.01, 0.61) , respectively]. Our meta-analysis suggests that zinc levels and Zn-Cu ratio, but not copper levels, may influence aneurysmal progress of AAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koksal C, Ercan M, Bozkurt AK, Cortelekoglu T, Konukoglu D (2007) Abdominal aortic aneurysm or aortic occlusive disease: role of trace element imbalance. Angiology 58(2):191–195. https://doi.org/10.1177/0003319707300354

    Article  CAS  PubMed  Google Scholar 

  2. Ziaja D, Chudek J, Sznapka M, Kita A, Biolik G, Sieron-Stoltny K, Pawlicki K, Domalik J, Ziaja K (2015) Trace elements in the wall of abdominal aortic aneurysms with and without coexisting iliac artery aneurysms. Biol Trace Elem Res 165(2):119–122. https://doi.org/10.1007/s12011-015-0240-8

    Article  CAS  PubMed  Google Scholar 

  3. Okuneva GN, Levicheva EN, Loginova II, Volkov AM, Cherniavskiǐ AM, Al'sov SA, Trunova VA, Zvereva VV (2008) Role of chemical elements in formation of an aortic aneurysm. Angiol Sosud Khil 14(4):21–26

  4. Siti HN, Kamisah Y, Kamsiah J (2015) The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc Pharmacol 71:40–56. https://doi.org/10.1016/j.vph.2015.03.005

    Article  CAS  Google Scholar 

  5. Cafueri G, Parodi F, Pistorio A, Bertolotto M, Ventura F, Gambini C, Bianco P, Dallegri F, Pistoia V, Pezzolo A, Palombo D (2012) Endothelial and smooth muscle cells from abdominal aortic aneurysm have increased oxidative stress and telomere attrition. PLoS One 7(4):e35312. https://doi.org/10.1371/journal.pone.0035312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Emeto TI, Moxon JV, Au M, Golledge J (2016) Oxidative stress and abdominal aortic aneurysm: potential treatment targets. Clin Sci (Lond) 130(5):301–315. https://doi.org/10.1042/cs20150547

    Article  CAS  Google Scholar 

  7. Klevay LM (1996) Trace elements, atherosclerosis, and abdominal aneurysms. Ann N Y Acad Sci 800:239–242

    Article  CAS  PubMed  Google Scholar 

  8. Tilson MD (1982) Decreased hepatic copper levels. A possible chemical marker for the pathogenesis of aortic aneurysms in man. Arch Surg (Chicago, Ill : 1960) 117(9):1212–1213

    Article  CAS  Google Scholar 

  9. Shazia Q, Mohammad ZH, Rahman T, Shekhar HU (2012) Correlation of oxidative stress with serum trace element levels and antioxidant enzyme status in beta thalassemia major patients: a review of the literature. Anemia 2012:270923–270927. https://doi.org/10.1155/2012/270923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189(1-2):147–163. https://doi.org/10.1016/s0300-483x(03)00159-8

    Article  CAS  PubMed  Google Scholar 

  11. Lucas ML, Carraro CC, Belló-Klein A, Kalil AN, Aerts NR, Carvalho FB, Fernandes MC, Zettler CG (2018) Oxidative stress in aortas of patients with advanced occlusive and aneurysmal diseases. Ann Vasc Surg 52:216–224. https://doi.org/10.1016/j.avsg.2018.02.027

    Article  PubMed  Google Scholar 

  12. Pincemail J, Defraigne JO, Cheramy-Bien JP, Dardenne N, Donneau AF, Albert A, Labropoulos N, Sakalihasan N (2012) On the potential increase of the oxidative stress status in patients with abdominal aortic aneurysm. Redox Rep 17(4):139–144. https://doi.org/10.1179/1351000212y.0000000012

  13. Piorunska-Stolzmann M, Iskra M, Patelski J, Majewski W (1998) Serum glycerol ester hydrolase activity is related to zinc and copper concentrations in atherosclerosis obliterans and aneurysm. J Trace Elem Med Biol 12(1):39–43. https://doi.org/10.1016/s0946-672x(98)80019-9

  14. Iskra M, Majewski W, Piorunska-Stolzmann M (2002) Modifications of magnesium and copper concentrations in serum and arterial wall of patients with vascular diseases related to ageing, atherosclerosis and aortic aneurysm. Magnes Res 15(3-4):279–285

    CAS  PubMed  Google Scholar 

  15. Iskra M, Patelski J, Majewski W (1997) Relationship of calcium, magnesium, zinc and copper concentrations in the arterial wall and serum in atherosclerosis obliterans and aneurysm. J Trace Elem Med Biol 11(4):248–252. https://doi.org/10.1016/s0946-672x(97)80020-x

  16. Senapati A, Carlsson LK, Fletcher CDM (1985) Is tissue copper deficiency associated with aortic aneurysms? Br J Surg 72(5):352–353. https://doi.org/10.1002/bjs.1800720507

    Article  CAS  PubMed  Google Scholar 

  17. Kurianiuk A, Socha K, Gacko M, Blachnio-Zabielska A, Karwowska A (2019) The relationship between the concentration of cathepsin A, D, and E and the concentration of copper and zinc, and the size of the aneurysmal enlargement in the wall of the abdominal aortic aneurysm. Ann Vasc Surg 55:182–188. https://doi.org/10.1016/j.avsg.2018.07.043

    Article  PubMed  Google Scholar 

  18. Dubick MA, Hunter GC, Casey SM, Keen CL (1987) Aortic ascorbic acid, trace elements, and superoxide dismutase activity in human aneurysmal and occlusive disease (42457). Proc Soc Exp Biol Med 184(2):138–143

    Article  CAS  PubMed  Google Scholar 

  19. Petrucci F, Tromba L, Majorani C, D'Ilio S, Violante N, Blasi S, Russo G, Berni A, Senofonte O (2014) Blood trace elements in abdominal aortic aneurysm (AAA): a pilot study on pre and post variation after endovascular aortic repair (EVAR). Trace Elem Electrolytes 31(4):160–165. https://doi.org/10.5414/TEX01348

    Article  Google Scholar 

  20. Jaakkola P, Hippelainen M, Kantola M (1994) Copper and zinc concentrations of abdominal aorta and liver in patients with infrarenal abdominal aortic aneurysm or aortoiliacal occlusive disease. Ann Chir Gynaecol 83(4):304–308

    CAS  PubMed  Google Scholar 

  21. Leone N, Courbon D, Ducimetiere P, Zureik M (2006) Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17(3):308–314. https://doi.org/10.1097/01.ede.0000209454.41466.b7

    Article  PubMed  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J, Altman DG (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg (London, England) 8(5):336–341. https://doi.org/10.1016/j.ijsu.2010.02.007

    Article  Google Scholar 

  23. Wen J, Li YP (2007) The selection of a summary statistic for use in meta-analysis. Chin J Evid Based Med 7(8):606–613 (in Chinese)

    Google Scholar 

  24. Thompson SG, Higgins JP (2002) How should meta-regression analyses be undertaken and interpreted? Stat Med 21(11):1559–1573. https://doi.org/10.1002/sim.1187

    Article  PubMed  Google Scholar 

  25. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed) 315(7109):629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  Google Scholar 

  26. McCormick ML, Gavrila D, Weintraub NL (2007) Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 27(3):461–469. https://doi.org/10.1161/01.atv.0000257552.94483.14

    Article  CAS  PubMed  Google Scholar 

  27. Bao B, Prasad AS, Beck FW, Fitzgerald JT, Snell D, Bao GW, Singh T, Cardozo LJ (2010) Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr 91(6):1634–1641. https://doi.org/10.3945/ajcn.2009.28836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu C, Huang Z, Liu L, Luo C, Lu G, Li Q, Gao X (2015) Zinc regulates lipid metabolism and MMPs expression in lipid disturbance rabbits. Biol Trace Elem Res 168(2):411–420. https://doi.org/10.1007/s12011-015-0367-7

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Khalil RA (2018) Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol (San Diego, Calif) 81:241–330. https://doi.org/10.1016/bs.apha.2017.08.002

    Article  CAS  Google Scholar 

  30. Liu J, Khalil RA (2017) Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog Mol Biol Transl Sci 148:355–420. https://doi.org/10.1016/bs.pmbts.2017.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morris DR, Biros E, Cronin O, Kuivaniemi H, Golledge J (2014) The association of genetic variants of matrix metalloproteinases with abdominal aortic aneurysm: a systematic review and meta-analysis. Heart 100(4):295–302. https://doi.org/10.1136/heartjnl-2013-304129

    Article  PubMed  Google Scholar 

  32. Rabkin SW (2017) The role matrix metalloproteinases in the production of aortic aneurysm. Prog Mol Biol Transl Sci 147:239–265. https://doi.org/10.1016/bs.pmbts.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  33. Cao JW, Duan SY, Zhang HX, Chen Y, Guo M (2019) Zinc deficiency promoted fibrosis via ROS and TIMP/MMPs in the myocardium of mice. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01902-4

  34. Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL (2010) Zinc and cardiovascular disease. Nutrition 26(11-12):1050–1057. https://doi.org/10.1016/j.nut.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  35. Chen XF, Wang JA, Hou J, Gui C, Tang LJ, Chen XQ, Xie XJ, Jiang JJ, Cai JF, Chen HS, Lu HS, Chen H (2009) Extracellular matrix metalloproteinase inducer (EMMPRIN) is present in smooth muscle cells of human aneurysmal aorta and is induced by angiotensin II in vitro. Clin Sci (Lond) 116(11):819–826. https://doi.org/10.1042/cs20080235

    Article  CAS  Google Scholar 

  36. Jin S, Ding P, Chu P, Li H, Sun J, Liang D, Song F, Xia B (2018) Zn(II) can mediate self-association of the extracellular C-terminal domain of CD147. Protein Cell 9(3):310–315. https://doi.org/10.1007/s13238-017-0443-1

    Article  CAS  PubMed  Google Scholar 

  37. Brewer GJ (2014) The promise of copper lowering therapy with tetrathiomolybdate in the cure of cancer and in the treatment of inflammatory disease. J Trace Elem Med Biol 28(4):372–378. https://doi.org/10.1016/j.jtemb.2014.07.015

  38. Fukai T, Ushio-Fukai M, Kaplan JH (2018) Copper transporters and copper chaperones: roles in cardiovascular physiology and disease. Am J Phys Cell Physiol 315(2):C186–c201. https://doi.org/10.1152/ajpcell.00132.2018

    Article  CAS  Google Scholar 

  39. Toghill BJ, Saratzis A, Bown MJ (2017) Abdominal aortic aneurysm—an independent disease to atherosclerosis? Cardiovasc Pathol 27:71–75. https://doi.org/10.1016/j.carpath.2017.01.008

    Article  PubMed  Google Scholar 

  40. Elkalioubie A, Haulon S, Duhamel A, Rosa M, Rauch A, Staels B, Susen S, Van Belle E, Dupont A (2015) Meta-analysis of abdominal aortic aneurysm in patients with coronary artery disease. Am J Cardiol 116(9):1451–1456. https://doi.org/10.1016/j.amjcard.2015.07.074

    Article  PubMed  Google Scholar 

  41. Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, Chapple S, Cohen G, Feher J, Grune T, Lengyel G, Mann GE, Pamplona R, Poli G, Portero-Otin M, Riahi Y, Salvayre R, Sasson S, Serrano J, Shamni O, Siems W, Siow RC, Wiswedel I, Zarkovic K, Zarkovic N (2010) Pathological aspects of lipid peroxidation. Free Radic Res 44(10):1125–1171. https://doi.org/10.3109/10715762.2010.498478

    Article  CAS  PubMed  Google Scholar 

  42. Lamb DJ, Leake DS (1994) Acidic pH enables caeruloplasmin to catalyse the modification of low-density lipoprotein. FEBS Lett 338(2):122–126. https://doi.org/10.1016/0014-5793(94)80348-x

    Article  CAS  PubMed  Google Scholar 

  43. Sudhahar V, Das A, Horimatsu T, Ash D, Leanhart S, Antipova O, Vogt S, Singla B, Csanyi G, White J, Kaplan JH, Fulton D, Weintraub NL, Kim HW, Ushio-Fukai M, Fukai T (2019) Copper Transporter ATP7A (Copper-Transporting P-Type ATPase/Menkes ATPase) Limits Vascular Inflammation and Aortic Aneurysm Development: Role of MicroRNA-125b. Arterioscler Thromb Vasc Biol 39 (11):2320-2337. https://doi.org/10.1161/atvbaha.119.313374

  44. Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4(3):176–185. https://doi.org/10.1038/nchembio.72

    Article  CAS  PubMed  Google Scholar 

  45. Shanbhag V, Jasmer-McDonald K, Zhu S, Martin AL, Gudekar N, Khan A, Ladomersky E, Singh K, Weisman GA, Petris MJ (2019) ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proc Natl Acad Sci U S A 116(14):6836–6841. https://doi.org/10.1073/pnas.1817473116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Klevay LM (2006) How dietary deficiency, genes and a toxin can cooperate to produce arteriosclerosis and ischemic heart disease. Cell Mol Biol 52(5):11–15. https://doi.org/10.1170/T728

    Article  CAS  PubMed  Google Scholar 

  47. Werman MJ, David R (1996) Lysyl oxidase activity, collagen cross-links and connective tissue ultrastructure in the heart of copper-deficient male rats. J Nutr Biochem 7(8):437–444. https://doi.org/10.1016/0955-2863(96)00076-9

    Article  CAS  Google Scholar 

  48. Onoda M, Yoshimura K, Aoki H, Ikeda Y, Morikage N, Furutani A, Matsuzaki M, Hamano K (2010) Lysyl oxidase resolves inflammation by reducing monocyte chemoattractant protein-1 in abdominal aortic aneurysm. Atherosclerosis 208(2):366–369. https://doi.org/10.1016/j.atherosclerosis.2009.07.036

    Article  CAS  PubMed  Google Scholar 

  49. Maret W (2000) The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr 130(5S Suppl):1455s–1458s. https://doi.org/10.1093/jn/130.5.1455S

    Article  CAS  PubMed  Google Scholar 

  50. Ilback NG, Friman G (2007) Interactions among infections, nutrients and xenobiotics. Crit Rev Food Sci Nutr 47(5):499–519. https://doi.org/10.1080/10408390600919015

    Article  CAS  PubMed  Google Scholar 

  51. Reina de la Torre ML, Navarro-Alarcon M, del Moral LM, Lopez GSH, Palomares-Bayo M, Oliveras Lopez MJ, Blanca Herrera RM, Agil A (2014) Serum Zn levels and Cu/Zn ratios worsen in hemodialysis patients, implying increased cardiovascular risk: a 2-year longitudinal study. Biol Trace Elem Res 158(2):129–135. https://doi.org/10.1007/s12011-014-9921-y

    Article  CAS  PubMed  Google Scholar 

  52. Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, Ganz T, Cousins RJ (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci U S A 102(19):6843–6848. https://doi.org/10.1073/pnas.0502257102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cvijanovich NZ, King JC, Flori HR, Gildengorin G, Wong HR (2009) Zinc homeostasis in pediatric critical illness. Pediatr Crit Care Med 10(1):29–34. https://doi.org/10.1097/PCC.0b013e31819371ce

    Article  PubMed  Google Scholar 

  54. Mertens K, Lowes DA, Webster NR, Talib J, Hall L, Davies MJ, Beattie JH, Galley HF (2015) Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. Br J Anaesth 114(6):990–999. https://doi.org/10.1093/bja/aev073

    Article  CAS  PubMed  Google Scholar 

  55. Prasad AS (2009) Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clinl Nutr Metab Care 12(6):646–652. https://doi.org/10.1097/MCO.0b013e3283312956

    Article  CAS  Google Scholar 

  56. White C, Lee J, Kambe T, Fritsche K, Petris MJ (2009) A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 284(49):33949–33956. https://doi.org/10.1074/jbc.M109.070201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Han M, Lin Z, Zhang Y (2013) The alteration of copper homeostasis in inflammation induced by lipopolysaccharides. Biol Trace Elem Res 154(2):268–274. https://doi.org/10.1007/s12011-013-9725-5

    Article  CAS  PubMed  Google Scholar 

  58. Shukla N, Maher J, Masters J, Angelini GD, Jeremy JY (2006) Does oxidative stress change ceruloplasmin from a protective to a vasculopathic factor? Atherosclerosis 187(2):238–250. https://doi.org/10.1016/j.atherosclerosis.2005.11.035

    Article  CAS  PubMed  Google Scholar 

  59. Obrenovich ME, Li Y, Parvathaneni K, Yendluri BB, Palacios HH, Leszek J, Aliev G (2011) Antioxidants in health, disease and aging. CNS Neurol Disord Drug Targets 10(2):192–207. https://doi.org/10.2174/187152711794480375

    Article  CAS  PubMed  Google Scholar 

  60. Eshak ES, Iso H, Yamagishi K, Maruyama K, Umesawa M, Tamakoshi A (2018) Associations between copper and zinc intakes from diet and mortality from cardiovascular disease in a large population-based prospective cohort study. J Nutr Biochem 56:126–132. https://doi.org/10.1016/j.jnutbio.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  61. Milton AH, Vashum KP, McEvoy M, Hussain S, McElduff P, Byles J, Attia J (2018) Prospective study of dietary zinc intake and risk of cardiovascular disease in women. Nutrients 10(1). https://doi.org/10.3390/nu10010038

  62. Chen W, Eisenberg R, Mowrey WB, Wylie-Rosett J, Abramowitz MK, Bushinsky DA, Melamed ML (2019) Association between dietary zinc intake and abdominal aortic calcification in US adults. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfz134

  63. Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12(3):259–266. https://doi.org/10.1016/j.pbi.2009.05.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant from National Natural Science Foundation, China (Grant No. 81770475), and the Major Research and Development Projects for the Zhejiang Science and Technology Agency, China (Grant No. 2017C03034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dr.Tingting Chen and Dr.Hongliang Zhang are co-first authors.

Dr.Xiaofeng Chen and Dr.Jianjun Jiang are co-corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Zhang, H., Zhang, Y. et al. Association of Circulating and Aortic Zinc and Copper Levels with Clinical Abdominal Aortic Aneurysm: a Meta-analysis. Biol Trace Elem Res 199, 513–526 (2021). https://doi.org/10.1007/s12011-020-02187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02187-8

Keywords

Navigation