Skip to main content

Advertisement

Log in

Insights into the Role of Magnesium Ions in Affecting Osteogenic Differentiation of Mesenchymal Stem Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Bone marrow mesenchymal stem cells (MSCs) are multipotent stem cells with the ability to differentiate into bone-producing cells, which is essential for bone formation. Magnesium biomedical materials, such as biodegradable matters with osteoinductive properties, play a vital role in the osteogenic differentiation of MSCs. International and Chinese studies have shown that magnesium ions, which are produced by biodegradation, mainly achieve this effect by regulating the expression of genes and proteins associated with osteogenesis, activating multiple signal pathways, elevating autophagic activities, and adjusting the pH in the microenvironment. It is of great significance to study the regulatory mechanisms and identify the optimal conditions that how magnesium ions promote osteogenic differentiation of MSCs. In this study, we summarized the regulatory mechanisms noted above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jia GZ, Hou Y, Chen CX, Niu JL, Zhang H, Huang H, Xiong MP, Yuan GY (2018a) Precise fabrication of open porous Mg scaffolds using NaCl templates: relationship between space holder particles, pore characteristics and mechanical behavior. Mater Des 140:106–113. https://doi.org/10.1016/j.matdes.2017.11.064

    Article  CAS  Google Scholar 

  2. Oryan A, Alidadi S (2018) Reconstruction of radial bone defect in rat by calcium silicate biomaterials. Life Sci 201:45–53. https://doi.org/10.1016/j.lfs.2018.03.048

    Article  CAS  PubMed  Google Scholar 

  3. Lin X, Ge J, Wu SL, Liu BH, Yang HL, Yang L (2017) Advances in metallic biomaterials with both osteogenic and anti-infection properties. Acta Metallurgica Sinica 53(10):1284–1302. https://doi.org/10.11900/0412.1961.2017.000269

    Article  CAS  Google Scholar 

  4. de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46. https://doi.org/10.1152/physrev.00012.2014

    Article  CAS  PubMed  Google Scholar 

  5. Devi KB, Nandi SK, Roy M (2019) Magnesium silicate bioceramics for bone regeneration: a review. J Indian Inst Sci 99(3):261–288. https://doi.org/10.1007/s41745-019-00119-7

    Article  Google Scholar 

  6. Zhang L, Yang C, Li J, Zhu Y, Zhang X (2014) High extracellular magnesium inhibits mineralized matrix deposition and modulates intracellular calcium signaling in human bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 450(4):1390–1395. https://doi.org/10.1016/j.bbrc.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  7. Almalki SG, Agrawal DK (2016) Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 92(1-2):41–51. https://doi.org/10.1016/j.diff.2016.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20(6):661–669. https://doi.org/10.1096/fj.05-5211com

    Article  CAS  PubMed  Google Scholar 

  9. Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51(1):271–310. https://doi.org/10.1007/s10853-015-9382-5

    Article  CAS  Google Scholar 

  10. Jeon OH, Panicker LM, Lu Q, Chae JJ, Feldman RA, Elisseeff JH (2016) Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. Sci Rep 6:26761. https://doi.org/10.1038/srep26761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lo Sicco C, Reverberi D, Balbi C, Ulivi V, Principi E, Pascucci L, Becherini P, Bosco MC, Varesio L, Franzin C, Pozzobon M, Cancedda R, Tasso R (2017) Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med 6(3):1018–1028. https://doi.org/10.1002/sctm.16-0363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y, Ochi M (2015) Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 589(11):1257–1265. https://doi.org/10.1016/j.febslet.2015.03.031

    Article  CAS  PubMed  Google Scholar 

  13. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18(9). https://doi.org/10.3390/ijms18091852

  14. Fu WL, Zhou CY, Yu JK (2014) A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Am J Sports Med 42(3):592–601. https://doi.org/10.1177/0363546513512778

    Article  PubMed  Google Scholar 

  15. Chiang ER, Ma HL, Wang JP, Liu CL, Chen TH, Hung SC (2016) Allogeneic mesenchymal stem cells in combination with hyaluronic acid for the treatment of osteoarthritis in rabbits. PLoS One 11(2):15. https://doi.org/10.1371/journal.pone.0149835

    Article  CAS  Google Scholar 

  16. Koh YG, Kwon OR, Kim YS, Choi YJ, Tak DH (2016) Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy 32(1):97–109. https://doi.org/10.1016/j.arthro.2015.09.010

    Article  PubMed  Google Scholar 

  17. de Windt TS, Vonk LA, Slaper-Cortenbach IC, van den Broek MP, Nizak R, van Rijen MH, de Weger RA, Dhert WJ, Saris DB (2017) Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells 35(1):256–264. https://doi.org/10.1002/stem.2475

    Article  CAS  PubMed  Google Scholar 

  18. Onder S, Calikoglu-Koyuncu AC, Kazmanli K, Urgen M, Kok FN, Torun-Kose G (2018) Magnesium doping on TiN coatings affects mesenchymal stem cell differentiation and proliferation positively in a dose-dependent manner. Biomed Mater Eng 29(4):427–438. https://doi.org/10.3233/bme-181000

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Zu H, Zhao D, Yang K, Tian S, Yu X, Lu F, Liu B, Yu X, Wang B, Wang W, Huang S, Wang Y, Wang Z, Zhang Z (2017) Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: in vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater 63:369–382. https://doi.org/10.1016/j.actbio.2017.08.051

    Article  CAS  PubMed  Google Scholar 

  20. Wang S, Li S, Hu M, Huo B (2019) Calcium response in bone cells at different osteogenic stages under unidirectional or oscillatory flow. Biomicrofluidics 13(6):064117. https://doi.org/10.1063/1.5128696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoshizawa S, Brown A, Barchowsky A, Sfeir C (2014) Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater 10(6):2834–2842. https://doi.org/10.1016/j.actbio.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  22. Hallab NJ, Vermes C, Messina C, Roebuck KA, Glant TT, Jacobs JJ (2002) Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts. J Biomed Mater Res 60(3):420–433. https://doi.org/10.1002/jbm.10106

    Article  CAS  PubMed  Google Scholar 

  23. Leidi M, Dellera F, Mariotti M, Maier JA (2011) High magnesium inhibits human osteoblast differentiation in vitro. Magnes Res 24(1):1–6. https://doi.org/10.1684/mrh.2011.0271

    Article  CAS  PubMed  Google Scholar 

  24. Li RW, Kirkland NT, Truong J, Wang J, Smith PN, Birbilis N, Nisbet DR (2014) The influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 102(12):4346–4357. https://doi.org/10.1002/jbm.a.35111

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Wang J, Yue J, Wang Y, Yang C, Cui Q (2018) High magnesium prevents matrix vesicle-mediated mineralization in human bone marrow-derived mesenchymal stem cells via mitochondrial pathway and autophagy. Cell Biol Int 42(2):205–215. https://doi.org/10.1002/cbin.10888

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Tang L, Qi H, Zhao Q, Liu Y, Zhang Y (2019) Dual function of magnesium in bone biomineralization. Adv Healthc Mater 8(21):e1901030. https://doi.org/10.1002/adhm.201901030

    Article  CAS  PubMed  Google Scholar 

  27. Park KS, Kim BJ, Lih E, Park W, Lee SH, Joung YK, Han DK (2018) Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold-mediated chondrogenesis. Acta Biomater 73:204–216. https://doi.org/10.1016/j.actbio.2018.04.022

    Article  CAS  PubMed  Google Scholar 

  28. Shimaya M, Muneta T, Ichinose S, Tsuji K, Sekiya I (2010) Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins. Osteoarthr Cartil 18(10):1300–1309. https://doi.org/10.1016/j.joca.2010.06.005

    Article  CAS  Google Scholar 

  29. Dou Y, Li N, Zheng Y, Ge Z (2014) Effects of fluctuant magnesium concentration on phenotype of the primary chondrocytes. J Biomed Mater Res A 102(12):4455–4463. https://doi.org/10.1002/jbm.a.35113

    Article  CAS  PubMed  Google Scholar 

  30. Zhang L, Yang C, He S (2013) Recent advances in the study of regulation effect of TRPM family in cellular calcium/magnesium homeostasis. Basic Clin Med 33(3):370–373. https://doi.org/10.16352/j.issn.1001-6325.2013.03.024

    Article  CAS  Google Scholar 

  31. Diaz-Tocados JM, Herencia C, Martinez-Moreno JM, Montes de Oca A, Rodriguez-Ortiz ME, Vergara N, Blanco A, Steppan S, Almaden Y, Rodriguez M, Munoz-Castaneda JR (2017) Magnesium chloride promotes osteogenesis through Notch signaling activation and expansion of mesenchymal stem cells. Sci Rep 7(1):7839. https://doi.org/10.1038/s41598-017-08379-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang D, Yang M, Guo B, Cao J, Yang L, Guo X, Li Y, Gao Z (2012) Zinc inhibits H(2)O(2)-induced MC3T3-E1 cells apoptosis via MAPK and PI3K/AKT pathways. Biol Trace Elem Res 148(3):420–429. https://doi.org/10.1007/s12011-012-9387-8

    Article  CAS  PubMed  Google Scholar 

  33. Rangaswami H, Schwappacher R, Tran T, Chan GC, Zhuang S, Boss GR, Pilz RB (2012) Protein kinase G and focal adhesion kinase converge on Src/Akt/beta-catenin signaling module in osteoblast mechanotransduction. J Biol Chem 287(25):21509–21519. https://doi.org/10.1074/jbc.M112.347245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang J, Ma XY, Feng YF, Ma ZS, Ma TC, Zhang Y, Li X, Wang L, Lei W (2017a) Magnesium ions promote the biological behaviour of rat calvarial osteoblasts by activating the PI3K/Akt signalling pathway. Biol Trace Elem Res 179(2):284–293. https://doi.org/10.1007/s12011-017-0948-8

    Article  CAS  PubMed  Google Scholar 

  35. Wu CM, Chen PC, Li TM, Fong YC, Tang CH (2013a) Si-Wu-tang extract stimulates bone formation through PI3K/Akt/NF-kappaB signaling pathways in osteoblasts. BMC Complement Altern Med 13:277. https://doi.org/10.1186/1472-6882-13-277

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu SS, Liang QH, Liu Y, Cui RR, Yuan LQ, Liao EY (2013b) Omentin-1 stimulates human osteoblast proliferation through PI3K/Akt signal pathway. Int J Endocrinol 2013:368970. https://doi.org/10.1155/2013/368970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Montes de Oca A, Guerrero F, Martinez-Moreno JM, Madueno JA, Herencia C, Peralta A, Almaden Y, Lopez I, Aguilera-Tejero E, Gundlach K, Buchel J, Peter ME, Passlick-Deetjen J, Rodriguez M, Munoz-Castaneda JR (2014) Magnesium inhibits Wnt/beta-catenin activity and reverses the osteogenic transformation of vascular smooth muscle cells. PLoS One 9(2):e89525. https://doi.org/10.1371/journal.pone.0089525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kulkarni RN, Bakker AD, Everts V, Klein-Nulend J (2010) Inhibition of osteoclastogenesis by mechanically loaded osteocytes: involvement of MEPE. Calcif Tissue Int 87(5):461–468. https://doi.org/10.1007/s00223-010-9407-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim JA, Yun HS, Choi YA, Kim JE, Choi SY, Kwon TG, Kim YK, Kwon TY, Bae MA, Kim NJ, Bae YC, Shin HI, Park EK (2018) Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo. Biomaterials 157:51–61. https://doi.org/10.1016/j.biomaterials.2017.11.032

    Article  CAS  PubMed  Google Scholar 

  40. Alamoud KA, Kukuruzinska MA (2018) Emerging insights into Wnt/beta-catenin signaling in head and neck cancer. J Dent Res 97(6):665–673. https://doi.org/10.1177/0022034518771923

    Article  CAS  PubMed  Google Scholar 

  41. Peng W-X, Huang J-G, Yang L, Gong A-H, Mo Y-Y (2017) Linc-RoR promotes MAPK/ERK signaling and confers estrogen-independent growth of breast cancer. Mol Cancer 16:161. https://doi.org/10.1186/s12943-017-0727-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Niu J, Yan T, Guo W, Wang W, Zhao Z (2019) Insight into the role of autophagy in osteosarcoma and its therapeutic implication. Front Oncol 9:1232. https://doi.org/10.3389/fonc.2019.01232

    Article  PubMed  PubMed Central  Google Scholar 

  43. Castiglioni S, Romeo V, Locatelli L, Cazzaniga A, Maier JAM (2018) TRPM7 and MagT1 in the osteogenic differentiation of human mesenchymal stem cells in vitro. Sci Rep 8(1):16195. https://doi.org/10.1038/s41598-018-34324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robinson DA, Griffith RW, Shechtman D, Evans RB, Conzemius MG (2010) In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater 6(5):1869–1877. https://doi.org/10.1016/j.actbio.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  45. Yang C, Yuan G, Zhang J, Tang Z, Zhang X, Dai K (2010) Effects of magnesium alloys extracts on adult human bone marrow-derived stromal cell viability and osteogenic differentiation. Biomed Mater 5(4):045005. https://doi.org/10.1088/1748-6041/5/4/045005

    Article  CAS  PubMed  Google Scholar 

  46. Luthringer BJ, Willumeit-Romer R (2016) Effects of magnesium degradation products on mesenchymal stem cell fate and osteoblastogenesis. Gene 575(1):9–20. https://doi.org/10.1016/j.gene.2015.08.028

    Article  CAS  PubMed  Google Scholar 

  47. Monfoulet LE, Becquart P, Marchat D, Vandamme K, Bourguignon M, Pacard E, Viateau V, Petite H, Logeart-Avramoglou D (2014) The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs. Tissue Eng Part A 20(13-14):1827–1840. https://doi.org/10.1089/ten.TEA.2013.0500

    Article  CAS  PubMed  Google Scholar 

  48. Fliefel R, Popov C, Troltzsch M, Kuhnisch J, Ehrenfeld M, Otto S (2016) Mesenchymal stem cell proliferation and mineralization but not osteogenic differentiation are strongly affected by extracellular pH. J Craniomaxillofac Surg 44(6):715–724. https://doi.org/10.1016/j.jcms.2016.03.003

    Article  PubMed  Google Scholar 

  49. Zhao D, Wang T, Kuhlmann J, Dong Z, Chen S, Joshi M, Salunke P, Shanov VN, Hong D, Kumta PN, Heineman WR (2016) In vivo monitoring the biodegradation of magnesium alloys with an electrochemical H2 sensor. Acta Biomater 36:361–368. https://doi.org/10.1016/j.actbio.2016.03.039

    Article  CAS  PubMed  Google Scholar 

  50. Lee JW, Han HS, Han KJ, Park J, Jeon H, Ok MR, Seok HK, Ahn JP, Lee KE, Lee DH, Yang SJ, Cho SY, Cha PR, Kwon H, Nam TH, Han JH, Rho HJ, Lee KS, Kim YC, Mantovani D (2016) Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci U S A 113(3):716–721. https://doi.org/10.1073/pnas.1518238113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cipriano AF, Sallee A, Guan RG, Zhao ZY, Tayoba M, Sanchez J, Liu H (2015) Investigation of magnesium-zinc-calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture. Acta Biomater 12:298–321. https://doi.org/10.1016/j.actbio.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  52. Hussain A, Bessho K, Takahashi K, Tabata Y (2012) Magnesium calcium phosphate as a novel component enhances mechanical/physical properties of gelatin scaffold and osteogenic differentiation of bone marrow mesenchymal stem cells. Tissue Eng Part A 18(7-8):768–774. https://doi.org/10.1089/ten.TEA.2011.0310

    Article  CAS  PubMed  Google Scholar 

  53. Berglund IS, Dirr EW, Ramaswamy V, Allen JB, Allen KD, Manuel MV (2018) The effect of Mg-Ca-Sr alloy degradation products on human mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 106(2):697–704. https://doi.org/10.1002/jbm.b.33869

    Article  CAS  PubMed  Google Scholar 

  54. Kim BS, Kim JS, Park YM, Choi BY, Lee J (2013) Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell. Mater Sci Eng C Mater Biol Appl 33(3):1554–1560. https://doi.org/10.1016/j.msec.2012.12.061

    Article  CAS  PubMed  Google Scholar 

  55. Won S, Huh YH, Cho LR, Lee HS, Byon ES, Park CJ (2017) Cellular response of human bone marrow derived mesenchymal stem cells to titanium surfaces implanted with calcium and magnesium ions. Tissue Eng Regen Med 14(2):123–131. https://doi.org/10.1007/s13770-017-0028-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang J, Ma X, Lin D, Shi H, Yuan Y, Tang W, Zhou H, Guo H, Qian J, Liu C (2015) Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials 53:251–264. https://doi.org/10.1016/j.biomaterials.2015.02.097

    Article  CAS  PubMed  Google Scholar 

  57. Gu Y, Zhang J, Zhang X, Liang G, Xu T, Niu W (2019) Three-dimensional printed Mg-doped beta-TCP bone tissue engineering scaffolds: effects of magnesium ion concentration on osteogenesis and angiogenesis in vitro. Tissue Eng Regen Med 16(4):415–429. https://doi.org/10.1007/s13770-019-00192-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Persaud-Sharma D, McGoron A (2012) Biodegradable magnesium alloys: a review of material development and applications. J Biomim Biomater Tissue Eng 12:25–39. https://doi.org/10.4028/www.scientific.net/JBBTE.12.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao D, Brown A, Wang T, Yoshizawa S, Sfeir C, Heineman WR (2018) In vivo quantification of hydrogen gas concentration in bone marrow surrounding magnesium fracture fixation hardware using an electrochemical hydrogen gas sensor. Acta Biomater 73:559–566. https://doi.org/10.1016/j.actbio.2018.04.032

    Article  CAS  PubMed  Google Scholar 

  60. Song G (2007) Control of biodegradation of biocompatable magnesium alloys. Corros Sci 49(4):1696–1701. https://doi.org/10.1016/j.corsci.2007.01.001

    Article  CAS  Google Scholar 

  61. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  62. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26(17):3557–3563. https://doi.org/10.1016/j.biomaterials.2004.09.049

    Article  CAS  PubMed  Google Scholar 

  63. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H (2006) In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27(7):1013–1018. https://doi.org/10.1016/j.biomaterials.2005.07.037

    Article  CAS  PubMed  Google Scholar 

  64. Wu D, Liang M, Dang H, Fang F, Xu F, Liu C (2018) Hydrogen protects against hyperoxia-induced apoptosis in type II alveolar epithelial cells via activation of PI3K/Akt/Foxo3a signaling pathway. Biochem Biophys Res Commun 495(2):1620–1627. https://doi.org/10.1016/j.bbrc.2017.11.193

    Article  CAS  PubMed  Google Scholar 

  65. Liu Y, Wang D-L, Huang Y-C, Wang T-B, Zeng H (2020) Hydrogen inhibits the osteoclastogenesis of mouse bone marrow mononuclear cells. Mater Sci Eng C Mater Biol Appl 110:110640–110640. https://doi.org/10.1016/j.msec.2020.110640

    Article  CAS  PubMed  Google Scholar 

  66. Johnson I, Perchy D, Liu H (2012) In vitro evaluation of the surface effects on magnesium-yttrium alloy degradation and mesenchymal stem cell adhesion. J Biomed Mater Res A 100(2):477–485. https://doi.org/10.1002/jbm.a.33290

    Article  CAS  PubMed  Google Scholar 

  67. Wang W, Jia G, Wang Q, Huang H, Li X, Zeng H, Ding W, Witte F, Zhang C, Jia W, Yuan G (2020) The in vitro and in vivo biological effects and osteogenic activity of novel biodegradable porous Mg alloy scaffolds. Mater Des 189:108514. https://doi.org/10.1016/j.matdes.2020.108514

    Article  CAS  Google Scholar 

  68. Jia G, Chen C, Zhang J, Wang Y, Yue R, Luthringer-Feyerabend BJC, Willumeit-Roemer R, Zhang H, Xiong M, Huang H, Yuan G, Feyerabend F (2018b) In vitro degradation behavior of Mg scaffolds with three-dimensional interconnected porous structures for bone tissue engineering. Corros Sci 144:301–312. https://doi.org/10.1016/j.corsci.2018.09.001

    Article  CAS  Google Scholar 

  69. Yu W, Zhao H, Ding Z, Zhang Z, Sun B, Shen J, Chen S, Zhang B, Yang K, Liu M, Chen D, He Y (2017) In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration. Colloids Surf B: Biointerfaces 149:330–340. https://doi.org/10.1016/j.colsurfb.2016.10.037

    Article  CAS  PubMed  Google Scholar 

  70. Kang YG, Wei J, Kim JE, Wu YR, Lee EJ, Su JC, Shin JW (2018a) Characterization and osteogenic evaluation of mesoporous magnesium-calcium silicate/polycaprolactone/polybutylene succinate composite scaffolds fabricated by rapid prototyping. RSC Adv 8(59):33882–33892. https://doi.org/10.1039/c8ra06281a

    Article  CAS  Google Scholar 

  71. Kang YG, Wei J, Shin JW, Wu YR, Su J, Park YS, Shin JW (2018b) Enhanced biocompatibility and osteogenic potential of mesoporous magnesium silicate/polycaprolactone/wheat protein composite scaffolds. Int J Nanomedicine 13:1107–1117. https://doi.org/10.2147/ijn.S157921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Atashi F, Modarressi A, Pepper MS (2015) The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 24(10):1150–1163. https://doi.org/10.1089/scd.2014.0484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dai Y, Tang Y, Xu X, Luo Z, Zhang Y, Li Z, Lin Z, Zhao S, Zeng M, Sun B, Cheng L, Zhu J, Xiong Z, Long H, Zhu Y, Yu K (2019) Evaluation of the mechanisms and effects of Mg-Ag-Y alloy on the tumor growth and metastasis of the MG63 osteosarcoma cell line. J Biomed Mater Res B Appl Biomater 107(8):2537–2548. https://doi.org/10.1002/jbm.b.34344

    Article  CAS  PubMed  Google Scholar 

  74. Kim J, Gilbert JL (2019) In vitro cytotoxicity of galvanically coupled magnesium-titanium particles on human osteosarcoma SAOS2 cells: A potential cancer therapy. J Biomed Mater Res B Appl Biomater 107(1):178–189. https://doi.org/10.1002/jbm.b.34109

    Article  CAS  PubMed  Google Scholar 

  75. Galli S, Stocchero M, Andersson M, Karlsson J, He W, Lilin T, Wennerberg A, Jimbo R (2017) The effect of magnesium on early osseointegration in osteoporotic bone: a histological and gene expression investigation. Osteoporos Int 28(7):2195–2205. https://doi.org/10.1007/s00198-017-4004-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang X, Omar O, Vazirisani F, Thomsen P, Ekstrom K (2018) Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. PLoS One 13(2):e0193059. https://doi.org/10.1371/journal.pone.0193059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cui Y, Luan J, Li H, Zhou X, Han J (2016) Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett 590(1):185–192. https://doi.org/10.1002/1873-3468.12024

    Article  CAS  PubMed  Google Scholar 

  78. Wang J, Xu J, Song B, Chow DH, Shu-Hang Yung P, Qin L (2017b) Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits. Acta Biomater 63:393–410. https://doi.org/10.1016/j.actbio.2017.09.018

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the funding of ‘San-ming’ Project of Medicine in Shenzhen (No. SZSM201612092) and the Research and Development Projects of Shenzhen (No. JCYJ20170307111755218), and the basic research project of Peking University Shenzhen hospital (NO.JCYJ2018004), Natural Science Foundation of Guangdong Province, China (2019A1515011290)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zeng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, T., Weng, J., Yu, F. et al. Insights into the Role of Magnesium Ions in Affecting Osteogenic Differentiation of Mesenchymal Stem Cells. Biol Trace Elem Res 199, 559–567 (2021). https://doi.org/10.1007/s12011-020-02183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02183-y

Keywords

Navigation