Skip to main content

Speciation Analysis of Chromium in Chromium-Enriched Yeast by Ion Chromatography-Inductively Coupled Plasma Mass Spectrometry


Chromium-enriched yeast (CrY) is a popular Cr dietary supplement, but suitable speciation analysis of highly toxic Cr(VI) in CrY is not available. Ion chromatography-inductively coupled plasma mass spectrometry method was firstly developed and validated for the quantification of Cr(III) and Cr(VI). Ultrasound-assisted weakly alkaline EDTA solution combined with boiling was used to extract two Cr species in CrY. Two species were separated on two successive anion-exchange columns using a mobile phase of 0.6 mmol/L EDTA and 76 mmol/L NH4NO3 solution. The method was sensitive, accurate (92.4–100.9%), and precise (0.8–3.1%). Species of Cr(VI) were not found in CrY.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. Hamilton EM, Young SD, Bailey EH, Watts MJ (2018) Chromium speciation in foodstuffs: a review. Food Chem 250:105–112.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang SQ (2019) Advances in speciation analysis of chronium. J Hyg Res 48(6):1037–1040

    Google Scholar 

  3. Pechancová R, Pluháček T, Milde D (2019) Recent advances in chromium speciation in biological samples. Spectrochim Acta B 152:109–122

    Article  Google Scholar 

  4. Institute of Medicine (2001) Dietary reference intakes for vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. The National Academies Press, Washington.

    Book  Google Scholar 

  5. Sperling M (2005) Chromium. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of analytical science, 2nd edn. Elsevier, New York, pp 113–126.

    Chapter  Google Scholar 

  6. EFSA Panel on Food Additives and Nutrient Sources added to Food (2012) Scientific Opinion on ChromoPrecise cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source. EFSA J 10(11):e2951.

    Article  CAS  Google Scholar 

  7. Zhitkovich A (2011) Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol 24(10):1617–1629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo X, Liu W, Bai X, He X, Zhang B (2014) Speciation of chromium in chromium yeast. World J Microbiol Biotechnol 30(12):3245–3250.

    Article  CAS  PubMed  Google Scholar 

  9. Yang L, Ciceri E, Mester Z, Sturgeon RE (2006) Application of double-spike isotope dilution for the accurate determination of Cr(III), Cr(VI) and total Cr in yeast. Anal Bioanal Chem 386(6):1673–1680.

    Article  CAS  PubMed  Google Scholar 

  10. Novotnik B, Zuliani T, Ščančar J, Milačič R (2013) Chromate in food samples: an artefact of wrongly applied analytical methodology? J Anal Atom Spectrom 28(4):558–566.

    Article  CAS  Google Scholar 

  11. Ščančar J, Milačič R (2014) A critical overview of Cr speciation analysis based on high performance liquid chromatography and spectrometric techniques. J Anal Atom Spectrom 29(3):427–443.

    Article  Google Scholar 

  12. Ndung’u K, Djane N-K, Malcus F, Mathiasson L (1999) Ultrasonic extraction of hexavalent chromium in solid samples followed by automated analysis using a combination of supported liquid membrane extraction and UV detection in a flow system. Analyst 124(9):1367–1372.

    Article  Google Scholar 

  13. United States Environmental Protection Agency (1996) Method 3060A alkaline digestion for hexavalent chromium. Accessed 21 Apr 2016

  14. Barrera-Diaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223-224:1–12.

    Article  CAS  PubMed  Google Scholar 

  15. Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533.

    Article  CAS  PubMed  Google Scholar 

  16. Séby F, Vacchina V (2018) Critical assessment of hexavalent chromium species from different solid environmental, industrial and food matrices. Trend Anal Chem 104:54–68

    Article  Google Scholar 

  17. Unceta N, Astorkia M, Abrego Z, Gomez-Caballero A, Goicolea MA, Barrio RJ (2016) A novel strategy for Cr(III) and Cr(VI) analysis in dietary supplements by speciated isotope dilution mass spectrometry. Talanta 154:255–262.

    Article  CAS  PubMed  Google Scholar 

  18. Wolle MM, Rahman GMM, Skip Kingston HM, Pamuku M (2014) Optimization and validation of strategies for quantifying chromium species in soil based on speciated isotope dilution mass spectrometry with mass balance. J Anal Atom Spectrom 29(9):1640–1647.

    Article  CAS  Google Scholar 

  19. Fabregat-Cabello N, Rodriguez-Gonzalez P, Castillo A, Malherbe J, Roig-Navarro AF, Long SE, Garcia Alonso JI (2012) Fast and accurate procedure for the determination of Cr(VI) in solid samples by isotope dilution mass spectrometry. Environ Sci Technol 46(22):12542–12549.

    Article  CAS  PubMed  Google Scholar 

  20. Guidotti L, Queipo Abad S, Rodriguez-Gonzalez P, Garcia Alonso JI, Beone GM (2015) Quantification of Cr(VI) in soil samples from a contaminated area in northern Italy by isotope dilution mass spectrometry. Environ Sci Pollut Res Int 22(22):17569–17576.

    Article  CAS  PubMed  Google Scholar 

  21. Ding WJ, Qian QF, Hou XL, Feng WY, Chen CY, Chai ZF, Zhang BR, Wang K (2002) A preliminary study of chromium distribution in chromium-rich brewer’s yeast cell by NAA. Biol Trace Elem Res 88(2):193–199.

    Article  CAS  PubMed  Google Scholar 

  22. Unceta N, Seby F, Malherbe J, Donard OF (2010) Chromium speciation in solid matrices and regulation: a review. Anal Bioanal Chem 397(3):1097–1111.

    Article  CAS  PubMed  Google Scholar 

  23. Rahman GM, Kingston HM, Towns TG, Vitale RJ, Clay KR (2005) Determination of hexavalent chromium by using speciated isotope-dilution mass spectrometry after microwave speciated extraction of environmental and other solid materials. Anal Bioanal Chem 382(4):1111–1120.

    Article  CAS  PubMed  Google Scholar 

  24. Kovács R, Béni Á, Karosi R, Sógor C, Posta J (2007) Investigation of chromium content in foodstuffs and nutrition supplements by GFAAS and determination of changing Cr(III) to Cr(VI) during baking and toasting bread. Food Chem 105(3):1209–1213

    Article  Google Scholar 

  25. Montes-Bayon M, DeNicola K, Caruso JA (2003) Liquid chromatography-inductively coupled plasma mass spectrometry. J Chromatogr A 1000(1–2):457–476

    Article  CAS  Google Scholar 

  26. Rekhi H, Rani S, Sharma N, Malik AK (2017) A review on recent applications of high-performance liquid chromatography in metal determination and speciation analysis. Crit Rev Anal Chem 47(6):524–537.

    Article  CAS  PubMed  Google Scholar 

  27. Li B, Hu JY, Zhao MT (2010) The performance and application on the collision/reaction cell ICP-MS. J Chin Mass Spectrom Soc 31(1):1–11

    Google Scholar 

Download references


This study was financially supported by the Angel Nutrition Research Funding (grant number AF2018003).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Shuang-Qing Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, SQ., Cheng, SH., Shen, S. et al. Speciation Analysis of Chromium in Chromium-Enriched Yeast by Ion Chromatography-Inductively Coupled Plasma Mass Spectrometry. Biol Trace Elem Res 199, 338–343 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Chromium-enriched yeast
  • Chromium
  • Speciation
  • Ion chromatography-inductively coupled plasma mass spectrometry