Skip to main content

Advertisement

Log in

Effect of Human Immunodeficiency Virus on Trace Elements in the Brain

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Comorbidities of human immunodeficiency virus (HIV) include HIV-associated neurocognitive disorder (HAND). Changes in the brain due to HIV include atrophy, hyperintensities, and diffusion changes. However, no research has focused on trace elements concentration changes in the brain due to HIV, as seen in other neurodegenerative diseases. Therefore, the aim of this study was to determine the concentration of several trace elements in the brains of individuals with and without HIV infection. Prior to formalin embalming, blood was drawn and tested in triplicate with Determine HIV-1/2 rapid tests and confirmed with a SD HIV Device 1/2 3.0 rapid HIV Kit. After embalming, tissue was sampled from the caudate nucleus and analyzed using inductively coupled plasma mass spectrometry. A Kruskal-Wallis test was used to determine statistically significant differences between the two groups (p < 0.05). Fifteen HIV-positive and 14 HIV-negative male cadavers were included (mean age 44, range 22 to 61). Cadmium was marginally decreased, possibly due to malnutrition or utilization by the HIV nucleocapsid. Nickel was marginally increased, perhaps due to a reduced capability to remove metals from the body. In conclusion, this article provides the first information on trace element levels in the brains from HIV-infected individuals and postulates that cadmium and nickel may play a role in the pathophysiology of HAND. This information can contribute to finding a treatment for HAND, other than the use of antiretroviral drugs. Future studies should asses the levels of cadmium and nickel in a larger cohort of HIV-infected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hellmuth J, Milanini B, Valcour V (2014) Interactions between aging and NeuroAIDS. Curr Opin HIV AIDS 9:527–532. https://doi.org/10.1016/j.pestbp.2011.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McArthur JC, Brew BJ (2010) HIV-associated neurocognitive disorders: is there a hidden epidemic? AIDS 24:1367–1370. https://doi.org/10.1097/qad.0b013e3283391d56

    Article  PubMed  Google Scholar 

  3. Cross S, Önen N, Gase A, Overton ET, Ances BM (2013) Identifying risk factors for HIV-associated neurocognitive disorders using the international HIV dementia scale. J NeuroImmune Pharmacol 8:1114–1122. https://doi.org/10.1007/s11481-013-9505-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Robertson K, Bayon C, Molina JM, McNamara P, Resch C, Muñoz-Moreno JA, Kulasegaram R, Schewe K, Burgos-Ramirez A, de Alvaro C, Cabrero E, Guion M, Norton M, van Wyk J (2014) Screening for neurocognitive impairment, depression, and anxiety in HIV-infected patients in Western Europe and Canada. AIDS Care 26:1555–1561. https://doi.org/10.1080/09540121.2014.936813

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fazeli PL, Woods SP, Heaton RK, Umlauf A, Gouaux B, Rosario D, Moore RC, Grant I, Moore DJ, HNRP Group (2014) An active lifestyle is associated with better neurocognitive functioning in adults living with HIV infection. J Neuro-Oncol 20:233–242. https://doi.org/10.1007/s13365-014-0240-z

    Article  Google Scholar 

  6. Focà E, Magro P, Motta D et al (2016) Screening for neurocognitive impairment in HIV-infected individuals at first contact after HIV diagnosis: the experience of a large clinical center in Northern Italy. Int J Mol Sci 17:1–9. https://doi.org/10.3390/ijms17040434

    Article  Google Scholar 

  7. Ances BM, Ortega M, Vaida F, Heaps J, Paul R (2012) Independent effects of HIV, aging, and HAART on brain volumetric measures. J Acquir Immune Defic Syndr 59:469–477. https://doi.org/10.1097/QAI.0b013e318249db17

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ragin AB, Wu Y, Gao Y et al (2015) Brain alterations within the first 100 days of HIV infection. Ann Clin Transl Neurol 2:12–21. https://doi.org/10.1002/acn3.136

    Article  PubMed  Google Scholar 

  9. Hanning U, Husstedt IW, Niederstadt TU, Evers S, Heindel W, Kloska SP (2011) Cerebral signal intensity abnormalities on T2-weighted MR images in HIV patients with highly active antiretroviral therapy. Relationship with clinical parameters and interval changes. Acad Radiol 18:1144–1150. https://doi.org/10.1016/j.acra.2011.04.013

    Article  PubMed  Google Scholar 

  10. Bartzokis G, Sultzer D, Mintz J, Holt LE, Marx P, Phelan CK, Marder SR (1994) In vivo evaluation of brain iron in Alzheimer’s disease and normal subjects using MRI. Biol Psychiatry 35:480–487. https://doi.org/10.1016/0006-3223(94)90047-7

    Article  CAS  PubMed  Google Scholar 

  11. Andrási E, Farkas E, Gawlik D et al (2000) Brain iron and zinc contents of German patients with Alzheimer disease. J Alzheimers Dis 2:17–26

    PubMed  Google Scholar 

  12. Corrigan FM, Reynolds GP, Ward NI (1991) Reductions of zinc and selenium in brain in Alzheimer’s disease. Trace Elem Med 8:1–5

    CAS  Google Scholar 

  13. Andrási E, Farkas E, Scheibler H et al (1995) Al, Zn, Cu, Mn and Fe levels in brain in Alzheimer’s disease. Arch Gerontol Geriatr 21:89–97

    PubMed  Google Scholar 

  14. Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxidative Med Cell Longev 2013:1–12

    Google Scholar 

  15. Cutts DA, Maguire RP, Stedman JD et al (1999) A comparative study in Alzheimer’s and normal brains of trace element distribution using PIXE and INA analyses and glucose metabolism by positron emission tomography. Biol Trace Elem Res 71–72:541–549. https://doi.org/10.1007/BF02784242

    Article  PubMed  Google Scholar 

  16. Spyrou N, Stedman J (1996) Cadmium concentrations in the brains of Alzheimer cases. Trans Am Nucl Soc 74:9606116

    Google Scholar 

  17. Panayi AE, Spyrou NM, Iversen BS et al (2002) Determination of cadmium and zinc in Alzheimer’s brain tissue using inductively coupled plasma mass spectrometry. J Neurol Sci 195:1–10. https://doi.org/10.1016/S0022-510X(01)00672-4

    Article  CAS  PubMed  Google Scholar 

  18. Nielsen FH (2001) The emergence of boron, nickel, silicon, vanadium and arsenic as elements of nutritional relevance. Trace Elem Nutr Heal Dis 93:93–104

    Google Scholar 

  19. Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects & oxidative stress. Indian J Med Res 128:412–425

    CAS  PubMed  Google Scholar 

  20. Emokpae M, Mbonu I (2018) Blood levels of some toxic metals in human immunodeficiency virus (HIV) type 1- infection. Ann Heal Res 4:75–81. https://doi.org/10.30442/ahr.0401-1-10

    Article  Google Scholar 

  21. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230. https://doi.org/10.1006/nbdi.1999.0250

    Article  CAS  PubMed  Google Scholar 

  22. Desai V, Kaler SG (2008) Role of copper in human neurological disorders. Am J Clin Nutr 88:855–858

    Google Scholar 

  23. Manto M (2014) Abnormal copper homeostasis: mechanisms and roles in neurodegeneration. Toxics 2:327–345. https://doi.org/10.3390/toxics2020327

    Article  CAS  Google Scholar 

  24. Tanchou V, Decimo D, Péchoux C et al (1998) Role of the N-terminal zinc finger of human immunodeficiency virus type 1 nucleocapsid protein in virus structure and replication. J Virol 72:4442–4447

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. BioMetals 14:343–351. https://doi.org/10.1023/A:1012982123386

    Article  CAS  PubMed  Google Scholar 

  26. Corrigan FM, Reynolds GP, Ward NI (1993) Hippocampal tin, aluminum and zinc in Alzheimer’s disease. Biometals 6:149–154. https://doi.org/10.1007/BF00205853

    Article  CAS  PubMed  Google Scholar 

  27. Kupka R, Msamanga GI, Spiegelman D, Morris S, Mugusi F, Hunter DJ, Fawzi WW (2004) Selenium status is associated with accelerated HIV disease progression among HIV-1–infected pregnant women in Tanzania. J Nutr 134:2556–2560. https://doi.org/10.1093/jn/134.10.2556

    Article  CAS  PubMed  Google Scholar 

  28. Constans J, Pellegrin JL, Sergeant C et al (1995) Serum selenium predicts outcome in HIV infection. J Acquir Immune Defic Syndr 10:392

    CAS  Google Scholar 

  29. Campa A, Shor-Posner G, Indacochea F et al (1999) Mortality risk in selenium-deficient HIV-positive children. J Acquir Immune Defic Syndr Hum Retrovirol 20:508–513

    CAS  PubMed  Google Scholar 

  30. Baum M, Shor-Posner G, Zhang G et al (1997) HIV-1 infection in women is associated with severe nutritional deficiencies. J Acquir Immune Defic Syndr Hum Retrovirol 16:272–278. https://doi.org/10.1097/00042560-199712010-00008

    Article  CAS  PubMed  Google Scholar 

  31. Chandra R, Dayton D (1982) Trace element regulation of immunity and infection. Nutr Res 2:721–733. https://doi.org/10.1080/07315724.1985.10720062

    Article  CAS  Google Scholar 

  32. Leite REP, Jacob-Filho W, Saiki M et al (2008) Determination of trace elements in human brain tissues using neutron activation analysis. J Radioanal Nucl Chem 278:581–584. https://doi.org/10.1007/s10967-008-1009-8

    Article  CAS  Google Scholar 

  33. Cornett CR, Markesbery WR, Ehmann WD (1998) Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicology 19:339–346

    CAS  PubMed  Google Scholar 

  34. Ward NI, Mason J (1987) Neutron activation analysis techniques for identifying elemental status in Alzheimer’s disease. J Radioanal Nucl Chem 113:515–526

    CAS  Google Scholar 

  35. Stedman JD, Spyrou NM (1997) Elemental analysis of the frontal lobe of “normal” brain tissue and that affected by Alzheimer’s disease. J Radioanal Nucl Chem 217:163–166. https://doi.org/10.1007/BF02034435

    Article  CAS  Google Scholar 

  36. Mantero-atienza E, Sotomayor MG, Shor-posner G et al (1991) Selenium status and immune function in asymptomatic HIV-1 seropositive men. Nutr Res 11:1237–1250

    Google Scholar 

  37. Di Bella S, Grilli E, Cataldo M, Petrosillo N (2010) Selenium deficiency and HIV infection. Infect Dis Rep 2:56–63. https://doi.org/10.4081/idr.2010.e18

    Article  Google Scholar 

  38. Ramakrishnan K, Shenbagarathai R, Kavitha K et al (2012) Selenium levels in persons with HIV/tuberculosis in India, Madurai City. Clin Lab 58:165–168

    CAS  PubMed  Google Scholar 

  39. Dworkin BM, Wormser G, Rosenthal W, Heier SK, Braunstein M, Weiss L, Jankowski R, Levy D, Weiselberg S (1985) Gastrointestinal manifestations of the acquired immunodeficiency syndrome: a review of 22 cases. Am J Gastroenterol 80:774–778

    CAS  PubMed  Google Scholar 

  40. Cirelli A, Ciardi M, de Simone C, Sorice F, Giordano R, Ciaralli L, Costantini S (1991) Serum selenium concentration and disease progress in patients with HIV infection. Clin Biochem 24:211–214. https://doi.org/10.1016/0009-9120(91)90601-A

    Article  CAS  PubMed  Google Scholar 

  41. Watanabe L, Junior F, Jordao A, Navarro A (2016) In fl uence of HIV infection and the use of antiretroviral therapy on selenium and selenomethionine concentrations and antioxidant protection. Nutrition 32:1238–1242. https://doi.org/10.1016/j.nut.2016.03.024

    Article  CAS  PubMed  Google Scholar 

  42. Staal F, Ela S, Roederer M et al (1992) Glutathione deficiency and human immunodeficiency virus infection. Lancet 339:909–912. https://doi.org/10.1016/0140-6736(92)90939-Z

    Article  CAS  PubMed  Google Scholar 

  43. Magaki S, Raghavan R, Mueller C et al (2007) Iron, copper, and iron regulatory protein 2 in Alzheimer’s disease and related dementias. Neurosci Lett 418:72–76. https://doi.org/10.1016/j.neulet.2007.02.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Raven EP, Lu PH, Tishler TA et al (2013) Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis 37:127–136. https://doi.org/10.3233/JAD-130209

    Article  CAS  PubMed  Google Scholar 

  45. Hagemeier J, Geurts JJ, Zivadinov R (2012) Brain iron accumulation in aging and neurodegenerative disorders. Expert Rev Neurother 12:1467–1480. https://doi.org/10.1586/ern.12.128

    Article  CAS  PubMed  Google Scholar 

  46. Savarino A, Pescarmona GP, Boelaert JR (1999) Iron metabolism and HIV infection: reciprocal interactions with potentially harmful consequences? Cell Biochem Funct 17:279–287. https://doi.org/10.1002/(SICI)1099-0844(199912)17:4<279::AID-CBF833>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  47. Mcdermid JM, Jaye A, Van Der Loeff MFS et al (2007) Elevated iron status strongly predicts mortality in West African adults with HIV infection. J Acquir Immune Defic Syndr 46:498–507

    PubMed  Google Scholar 

  48. Boelaert J, Weinberg G, Weinberg E (1996) Altered iron metabolism in HIV infection: mechanisms, possible consequences, and proposals for management. Infect Agents Dis 5:36

    CAS  PubMed  Google Scholar 

  49. Lannfelt L, Blennow K, Zetterberg H et al (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7:779–786. https://doi.org/10.1016/S1474-4422(08)70167-4

    Article  CAS  PubMed  Google Scholar 

  50. Kessler H, Pajonk FG, Bach D, Schneider-Axmann T, Falkai P, Herrmann W, Multhaup G, Wiltfang J, Schäfer S, Wirths O, Bayer TA (2008) Effect of copper intake on CSF parameters in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial. J Neural Transm 115:1651–1659. https://doi.org/10.1007/s00702-008-0136-2

    Article  CAS  PubMed  Google Scholar 

  51. Kessler H, Bayer TA, Bach D, Schneider-Axmann T, Supprian T, Herrmann W, Haber M, Multhaup G, Falkai P, Pajonk FG (2008) Intake of copper has no effect on cognition in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial. J Neural Transm 115:1181–1187. https://doi.org/10.1007/s00702-008-0080-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Donfrancesco A, Deb G, Dominici C, et al (1990) Effects of a single course of deferoxamine in neuroblastoma. 4929–4930

  53. Donfrancesco A, De Bernardi B, Carli M et al (1995) Deferoxamine followed by cyclophosphamide, etoposide, carboplatin, thiotepa, induction regimen in advanced neuroblastoma: preliminary results. Eur J Cancer 31:612–615

    Google Scholar 

  54. Blatt J (1994) Deferoxamine in children with recurrent neuroblastoma. Anticancer Res 14:2109–2112

    CAS  PubMed  Google Scholar 

  55. Brem S, Grossman SA, Carson KA et al (2005) Phase 2 trial of copper depletion and penicillamine as antiangiogenesis therapy of glioblastoma. Neuro-Oncology 7:246–253. https://doi.org/10.1215/S1152851704000869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stout JC, Ellis RJ, Jernigan TL et al (1998) Progressive cerebral volume loss in human immunodeficiency virus infection. Arch Neurol 55:161–168. https://doi.org/10.1001/archneur.55.2.161

    Article  CAS  PubMed  Google Scholar 

  57. Paul R, Cohen R, Navia B, Tashima K (2002) Relationships between cognition and structural neuroimaging findings in adults with human immunodeficiency virus type-1. Neurosci Biobehav Rev 26:353–359

    PubMed  Google Scholar 

  58. Arinola O, Adedapo K, Kehinde A, Olaniyi JA, Akiibinu MO (2004) Acute phase proteins, trace elements in asymptomatic human immunodeficiency virus infection in Nigerians. Afr J Med Med Sci 33:317–322

    CAS  PubMed  Google Scholar 

  59. Afridi HI, Kazi TG, Kazi N, Kandhro GA, Shah AQ, Baig JA, Khan S, Kolachi NF, Wadhwa SK, Shah F (2011) Evaluation of arsenic, cadmium, lead, nickel, and zinc in biological samples (scalp hair, blood, and urine) of tuberculosis and diarrhea male human immunodeficiency virus patients. Clin Lab 57:867–878

    CAS  PubMed  Google Scholar 

  60. Xu X, Hu H, Dailey AB et al (2013) Potential health impacts of heavy metals on HIV-infected population in USA. PLoS One 8:1–8. https://doi.org/10.1371/journal.pone.0074288

    Article  CAS  Google Scholar 

  61. Xu X, Hu H, Hong YA (2017) Body burden of heavy metals among HIV high risk population in USA. Environ Pollut 220:1121–1126. https://doi.org/10.1016/j.envpol.2016.11.023

    Article  CAS  PubMed  Google Scholar 

  62. Satarug S, Baker JR, Urbenjapol S et al (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83

    CAS  PubMed  Google Scholar 

  63. Niyongabo T, Bouchaud O, Henzel D, Melchior JC, Samb B, Dazza MC, Ruggeri C, Begue JC, Coulaud JP, Larouzé B (1997) Nutritional status of HIV-seropositive subjects in an AIDS clinic in Paris. Eur J Clin Nutr 51:637–640. https://doi.org/10.1038/sj.ejcn.1600461

    Article  CAS  PubMed  Google Scholar 

  64. Dworkin BM (1994) Selenium deficiency in HIV infection and the acquired immunodeficiency syndrome (AIDS). Chem Biol Interact 91:181–186. https://doi.org/10.1016/0009-2797(94)90038-8

    Article  CAS  PubMed  Google Scholar 

  65. Odeh M (1992) The role of zinc in acquired immunodeficiency syndrome. J Intern Med 231:463–469. https://doi.org/10.1111/j.1365-2796.1992.tb00961.x

    Article  CAS  PubMed  Google Scholar 

  66. Stambullian M, Feliu S, Slobodianik N (2007) Nutritional status in patients with HIV infection and AIDS. Br J Nutr 98:140–143. https://doi.org/10.1017/S0007114507839626

    Article  CAS  Google Scholar 

  67. Stone CA, Kawai K, Kupka R, Fawzi WW (2010) Role of selenium in HIV infection. Nutr Rev 68:671–681. https://doi.org/10.1111/j.1753-4887.2010.00337.x

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sappey C, Leclercq P, Coudray C et al (1994) Vitamin, trace element and peroxide status in HIV seropositive patients: asymptomatic patients present a severe β-carotene deficiency. Clin Chim Acta 230:35–42. https://doi.org/10.1016/0009-8981(94)90086-8

    Article  CAS  PubMed  Google Scholar 

  69. Bogden J, Kemp F, Han S et al (2000) Status of selected nutrients and progression of human immunodeficiency virus type 1 infection. Am J Clin Nutr 72:809–815. https://doi.org/10.1093/ajcn/72.3.809

    Article  CAS  PubMed  Google Scholar 

  70. Lai H, Lai S, Shor-Posner G, Ma F, Trapido E, Baum MK (2001) Plasma zinc, copper, copper: zinc ratio, and survival in a cohort of HIV-1-infected homosexual men. J Acquir Immune Defic Syndr 27:56–62

    CAS  PubMed  Google Scholar 

  71. Graham NM (1992) On’Specific nutrient abnormalities in asymptomatic HIV-1 infection’. AIDS 6:1552–1553

    CAS  PubMed  Google Scholar 

  72. Hartwig A (2001) Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid Redox Signal 3:625–634

    CAS  PubMed  Google Scholar 

  73. South TL, Kim B, Summers MF (1989) 113Cd NMR studies of a 1:1 Cd adduct with an 18-residue finger peptide from HIV-1 nucleic acid binding protein, p7. J Am Chem Soc 111:395–396. https://doi.org/10.1021/ja00183a074

    Article  CAS  Google Scholar 

  74. Haraguchi Y, Sakurai H, Hussain S et al (1999) Inhibition of HIV-1 infection by zinc group metal compounds. Antivir Res 43:123–133

    CAS  PubMed  Google Scholar 

  75. Chaturvedi U, Shrivastava R, Upreti R (2004) Viral infections and trace elements: a complex interaction. Curr Sci 87:1536–1554

    CAS  Google Scholar 

  76. Hall AM, Hendry BM, Nitsch D, Connolly JO (2011) Tenofovir-associated kidney toxicity in HIV-infected patients: a review of the evidence. Am J Kidney Dis 57:773–780. https://doi.org/10.1053/j.ajkd.2011.01.022

    Article  CAS  PubMed  Google Scholar 

  77. Jones M, Núñez M (2012) Liver toxicity of antiretroviral drugs. Semin Liver Dis 32:167–176. https://doi.org/10.1055/s-0032-1316472

    Article  CAS  PubMed  Google Scholar 

  78. Okatch H, Ngwenya B, Raletamo KM, Andrae-marobela K (2012) Determination of potentially toxic heavy metals in traditionally used medicinal plants for HIV/AIDS opportunistic infections in Ngamiland District in Northern Botswana. Anal Chim Acta 730:42–48. https://doi.org/10.1016/j.aca.2011.11.067

    Article  CAS  PubMed  Google Scholar 

  79. Steenkamp V, Stewart MJ, Curowska E, Zuckerman M (2002) A severe case of multiple metal poisoning in a child treated with a traditional medicine. Forensic Sci Int 128:123–126. https://doi.org/10.1016/S0379-0738(02)00184-6

    Article  PubMed  Google Scholar 

  80. Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A (2014) Anatomical region differences and age-related changes in copper, zinc, and manganese levels in the human brain. Biol Trace Elem Res 161:190–201. https://doi.org/10.1007/s12011-014-0093-6

    Article  CAS  PubMed  Google Scholar 

  81. Allavena C, Dousset B, May T et al (1995) Relationship of trace element, immunological markers, and HIV 1 infection progression. Biol Trace Elem Res 47:133–138

    CAS  PubMed  Google Scholar 

  82. Kassu A, Yabutani T, Mahmud Z et al (2006) Alterations in serum levels of trace elements in tuberculosis and HIV infections. Eur J Clin Nutr 60:580–586. https://doi.org/10.1038/sj.ejcn.1602352

    Article  CAS  PubMed  Google Scholar 

  83. Ndagije F, Baribwira C, Coulter JBS (2007) Micronutrients and T-cell subsets: a comparison between HIV-infected and uninfected, severely malnourished Rwandan children. Ann Trop Paediatr 27:269–275. https://doi.org/10.1179/146532807x245652

    Article  CAS  PubMed  Google Scholar 

  84. Papathakis P, Rollins N, Chantry C et al (2007) Micronutrient status during lactation in HIV-infected and HIV-uninfected South African women during the first 6 mo after delivery. Am J Clin Nutr 85:182–192

    CAS  PubMed  Google Scholar 

  85. Skurnick J, Bogden J, Baker H et al (1996) Micronutrient profiles in HIV-1-infected heterosexual adults. J Acquir Immune Defic Syndr Hum Retrovirol 12:75–83. https://doi.org/10.1097/00042560-199605010-00011

    Article  CAS  PubMed  Google Scholar 

  86. Walter RM, Oster MH, Lee TJ et al (1990) Zinc status in human immunodeficiency virus infection. Life Sci 46:1597–1600

    CAS  PubMed  Google Scholar 

  87. Beach R, Mantero-Atienza E, Shor-Posner G et al (1992) Specific nutrient abnormalities in asymptomatic HIV-1 infection. AIDS 6:701–708

    CAS  PubMed  Google Scholar 

  88. Beck KWKW, Schramel P, Hedl A et al (1990) Serum trace element levels in HIV-infected subjects. Biol Trace Elem Res 25:89–96. https://doi.org/10.1007/BF02990269

    Article  CAS  PubMed  Google Scholar 

  89. Graham N, Sorensen D, Odaka N, Brookmeyer R, Chan D, Willett WC, Morris JS, Saah AJ (1991) Relationship of serum copper and zinc levels to HIV-1 seropositivity and progression to AIDS. J Acquir Immune Defic Syndr 4:976–980

    CAS  PubMed  Google Scholar 

  90. Moreno T, Artacho R, Navarro M, Pérez A, Ruiz-López MD (1998) Serum copper concentration in HIV-infection patients and relationships with other biochemical indices. Sci Total Environ 217:21–26. https://doi.org/10.1016/S0048-9697(98)00158-2

    Article  CAS  PubMed  Google Scholar 

  91. Bilbis LS, Idowu DB, Saidu Y et al (2010) Serum levels of antioxidant vitamins and mineral elements of human immunodeficiency virus positive subjects in Sokoto, Nigeria. Ann Afr Med 9:235–239. https://doi.org/10.4103/1596-3519.70963

    Article  PubMed  Google Scholar 

  92. Aragão PHA, Santos SBDOS, Costa ECSDA, et al (2003) Study of heavy metal content in hiv-infected blood using x-ray fluorescence technique. Cell Mol Biol 49:415–417. https://doi.org/10.1170/50

  93. Akinola FF, Akinjinmi AA, Oguntibeju OO (2012) Effect of combined antiretroviral therapy on selected trace elements and CD4+ T-cell count in HIV-positive persons in an African setting. J AIDS Clin Res 3:1–5. https://doi.org/10.4172/2155-6113.1000185

    Article  Google Scholar 

  94. Rousseau MMC, Molines C, Moreau J, Delmont J (2000) Influence of highly active antiretroviral therapy on micronutrient profiles in HIV-infected patients. Ann Nutr Metab 44:212–216

    CAS  PubMed  Google Scholar 

  95. Niyongabo T, Henzel D, Ndayishimyie J et al (1999) Nutritional status of adult inpatients in Bujumbura, Burundi (impact of HIV infection). Eur J Clin Nutr 53:579–582. https://doi.org/10.1038/sj.ejcn.1600789

    Article  CAS  PubMed  Google Scholar 

  96. Baum M, Cassetti L, Bonvehi P et al (1994) Inadequate dietary intake and altered nutrition status in early HIV-1 infection. Nutrition 10:16

    CAS  PubMed  Google Scholar 

  97. Range N, Andersen AB, Magnussen P et al (2005) The effect of micronutrient supplementation on treatment outcome in patients with pulmonary tuberculosis: a randomized controlled trial in Mwanza, Tanzania. Tropical Med Int Health 10:826–832

    CAS  Google Scholar 

  98. Range N, Changalucha J, Krarup H et al (2006) The effect of multi-vitamin/mineral supplementation on mortality during treatment of pulmonary tuberculosis: a randomised two-by-two factorial trial in Mwanza, Tanzania. Br J Nutr 95:762–770. https://doi.org/10.1079/bjn20051684

    Article  CAS  PubMed  Google Scholar 

  99. Kaiser JD, Campa AM, Ondercin JP, Leoung GS, Pless RF, Baum MK (2006) Micronutrient supplementation increases CD4 count in HIV-infected individuals on highly active antiretroviral therapy. J Acquir Immune Defic Syndr 42:523–528. https://doi.org/10.1097/01.qai.0000230529.25083.42

    Article  CAS  PubMed  Google Scholar 

  100. Jiamton S, Pepin J, Suttent R et al (2003) A randomized trial of the impact of multiple micronutrient supplementation on mortality among HIV-infected individuals living in Bangkok. Aids 17:2461–2469. https://doi.org/10.1097/00002030-200311210-00008

    Article  CAS  PubMed  Google Scholar 

  101. Austin J, Singhal N, Voigt R et al (2006) A community randomized controlled clinical trial of mixed carotenoids and micronutrient supplementation of patients with acquired immunodeficiency syndrome. Eur J Clin Nutr 60:1266–1276. https://doi.org/10.1038/sj.ejcn.1602447

    Article  CAS  PubMed  Google Scholar 

  102. Mda S, van Raaij JMA, de Villiers FPR, MacIntyre U, Kok FJ (2010) Short-term micronutrient supplementation reduces the duration of pneumonia and diarrheal episodes in HIV-infected children. J Nutr 140:969–974. https://doi.org/10.3945/jn.109.110312

    Article  CAS  PubMed  Google Scholar 

  103. Villamor E, Aboud S, Koulinska I et al (2006) Zinc supplementation to HIV-1-infected pregnant women: effects on maternal anthropometry, viral load, and early mother-to-child transmission. Eur J Clin Nutr 60:862–869. https://doi.org/10.1038/sj.ejcn.1602391

    Article  CAS  PubMed  Google Scholar 

  104. Singhal N, Austin J (2002) A clinical review of micronutrients in HIV infection. J Int Assoc Phys AIDS Care 1:63–75. https://doi.org/10.1177/154510970200100205

    Article  Google Scholar 

  105. Baum MK, Campa A, Lai S et al (2003) Zinc status in human immunodeficiency virus type 1 infection and illicit drug use. Clin Infect Dis 37:117–123. https://doi.org/10.1086/375875

    Article  Google Scholar 

  106. Fufa H, Umeta M, Taffesse S et al (2009) Nutritional and immunological status and their associations among HIV-infected adults in Addis Ababa, Ethiopia. Food Nutr Bull 30:227–232. https://doi.org/10.1177/156482650903000303

    Article  PubMed  Google Scholar 

  107. Wellinghausen N, Kern W, Jöchle W, Kern P (2000) Zinc serum level in human immunodeficiency virus-infected patients in relation to immunological status. Biol Trace Elem Res 73:139–149

    CAS  PubMed  Google Scholar 

  108. Baum M, Shor-Posner G, Lai S et al (1997) High risk of HIV-related mortality is associated with selenium deficiency. J Acquir Immune Defic Syndr 15:370–374

    CAS  Google Scholar 

  109. Danscher G, Jensen KB, Frederickson CJ et al (1997) Increased amount of zinc in the hippocampus and amygdala of Alzheimer’s diseased brains: a proton-induced X-ray emission spectroscopic analysis of cryostat sections from autopsy material. J Neurosci Methods 76:53–59

    CAS  PubMed  Google Scholar 

  110. Henderson RA, Talusan K, Button N et al (1997) Serum and plasma markers of nutritional status in children infected with the human immunodeficiency virus. J Am Diet Assoc 97:1377–1381

    CAS  PubMed  Google Scholar 

  111. Malvy DJM, Richard MJ, Arnaud J et al (1994) Relationship of plasma malondialdehyde, vitamin E and antioxidant micronutrients to human immunodeficiency virus-1 seropositivity. Clin Chim Acta 224:89–94. https://doi.org/10.1016/0009-8981(94)90124-4

    Article  CAS  PubMed  Google Scholar 

  112. Falutz J, Tsoukas C, Gold P (1988) Zinc as a cofactor in human immunodeficiency virus—induced immunosuppression. JAMA 259:2850–2851

    CAS  PubMed  Google Scholar 

  113. Tohill BC, Heilig CM, Klein RS et al (2007) Nutritional biomarkers associated with gynecological conditions among US women with or at risk of HIV infection. Am J Clin Nutr 85:1327–1334

    CAS  PubMed  Google Scholar 

  114. Khalili H, Soudbakhsh A, Hajiabdolbaghi M, Dashti-Khavidaki S, Poorzare A, Saeedi AA, Sharififar R (2008) Nutritional status and serum zinc and selenium levels in Iranian HIV infected individuals. BMC Infect Dis 8:1–7. https://doi.org/10.1186/1471-2334-8-165

    Article  CAS  Google Scholar 

  115. Fabris N, Mocchegiani E, Galli M et al (1988) AIDS, zinc deficiency, and thymic hormone failure. JAMA 259:839–840

    CAS  PubMed  Google Scholar 

  116. Libanore M, Bicocchi R, Raise E et al (1987) Zinc and lymphocyte subsets in patients with HIV infection. Minerva Med 78:1805–1812

    CAS  PubMed  Google Scholar 

  117. Beisel W (1976) Trace elements in infectious processes. Med Clin North Am 60:831–849. https://doi.org/10.1016/S0025-7125(16)31864-8

    Article  CAS  PubMed  Google Scholar 

  118. Siberry GK, Ruff AJ, Black R (2002) Lipodystrophy and human immunodeficiency virus infection. Nutr Sci J 22:527–538

    CAS  Google Scholar 

  119. Cárcamo C, Hooton T, Weiss N et al (2006) Randomized controlled trial of zinc supplementation for persistent diarrhea in adults with HIV-1 infection. J Acquir Immune Defic Syndr 43:197–201. https://doi.org/10.1097/01.qai.0000242446.44285.b5

    Article  CAS  PubMed  Google Scholar 

  120. Cousins R, Leinart A (1988) Tissue-specific regulation of zinc metabolism and metallothionein genes by interleukin 1. FASEB J 2:2884–2890. https://doi.org/10.1096/fasebj.2.13.2458983

    Article  CAS  PubMed  Google Scholar 

  121. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454

    CAS  Google Scholar 

  122. Isa L, Lucchini A, Lodi S, Giachetti M (1992) Blood zinc status and zinc treatment in human immunodeficiency virus-infected patients. Int J Clin Lab Res 22:45–47

    CAS  PubMed  Google Scholar 

  123. Mocchegiani E, Veccia S, Ancarani F et al (1995) Benefit of oral zinc supplementation as an adjunct to zidovudine (AZT) therapy against opportunistic infections in AIDS. Int J Immunopharmacol 17:719–727. https://doi.org/10.1016/0192-0561(95)00060-F

    Article  CAS  PubMed  Google Scholar 

  124. Baum MK, Lai S, Sales S, Page JB, Campa A (2010) Randomized, controlled clinical trial of zinc supplementation to prevent immunological failure in HIV-infected adults. Clin Infect Dis 50:1653–1660. https://doi.org/10.1086/652864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bobat R, Coovadia H, Stephen C et al (2005) Safety and efficacy of zinc supplementation for children with HIV-1 infection in South Africa: a randomised double-blind placebo-controlled trial. Lancet 366:1862–1867. https://doi.org/10.1016/S0140-6736(05)67756-2

    Article  CAS  PubMed  Google Scholar 

  126. Reich EN, Church JA (1994) Oral zinc supplementation in the treatment of HIV-infected children. Pediatr AIDS HIV Infect 5:357–360

    CAS  PubMed  Google Scholar 

  127. Green JA, Lewin SR, Wightman F et al (2005) A randomised controlled trial of oral zinc on the immune response to tuberculosis in HIV-infected patients. Int J Tuberc Lung Dis 9:1378–1384

    CAS  PubMed  Google Scholar 

  128. Fawzi WW, Villamor E, Msamanga GI et al (2005) Trial of zinc supplements in relation to pregnancy outcomes, hematologic indicators, and T cell counts among HIV-1–infected. Am J Clin Nutr 81:161–167

    CAS  PubMed  Google Scholar 

  129. Djinhi J, Tiahou G, Zirihi G et al (2008) Selenium deficiency and oxidative stress in clinically asymptomatic HIV1-infected persons in Côte d’Ivoire. Biol Clin Nu 3279:11–13

    Google Scholar 

  130. Dworkin BM, Rosenthal WS, Wormser GP, Weiss L (1986) Selenium deficiency in the acquired immunodeficiency syndrome. J Parenter Enter Nutr 10:405–407

    CAS  Google Scholar 

  131. Stephensen CB, Marquis GS, Douglas SD et al (2007) Glutathione, glutathione peroxidase, and selenium status in HIV-positive and HIV-negative adolescents and young adults. Am J Clin Nutr 85:173–181

    CAS  PubMed  Google Scholar 

  132. Forrester JE, Wang XD, Knox TA et al (2009) Factors associated with serum retinol, α-tocopherol, carotenoids, and selenium in Hispanics with problems of HIV, chronic hepatitis C, and drug use. J Public Health Policy 30:285–299. https://doi.org/10.1016/j.neuroimage.2009.05.006.MRI

    Article  PubMed  Google Scholar 

  133. Constans J, Peuchant E, Pellegrin JL, Sergeant C, Hamon C, Dubourg L, Thomas MJ, Simonoff M, Pellegrin I, Brossard G (1995) Fatty acids and plasma antioxidants in HIV-positive patients: correlation with nutritional and immunological status. Clin Biochem 28:421–426. https://doi.org/10.1016/0009-9120%2895%2900017-4

    Article  CAS  PubMed  Google Scholar 

  134. Dworkin BM, Rosenthal W, Wormser G, et al (1988) Abnormalities of blood selenium and glutathione peroxidase activity in patients with acquired immunodeficiency syndrome and aids-related complex

  135. Olmsted L, Schrauzer G, Flores-Arce M, Dowd J (1989) Selenium supplementation of symptomatic human immunodeficiency virus infected patients. Biol Trace Elem Res 20:59

    CAS  PubMed  Google Scholar 

  136. Constans J, Pellegrin J, Peuchant E et al (1993) Membrane fatty acids and blood antioxidants in 77 patients with HIV infection. Rev Med Interne 14:1003. https://doi.org/10.1016/S0248-8663(05)80121-3

    Article  CAS  PubMed  Google Scholar 

  137. Look MP, Rockstroh JK, Rao GS et al (1997) Serum selenium, plasma glutathione (GSH) and erythrocyte glutathione peroxidase (GSH-Px)-levels in asymptomatic versus symptomatic human immunodeficiency virus-1 (HIV-1)-infection. Eur J Clin Nutr 51:266–272. https://doi.org/10.1038/sj.ejcn.1600401

    Article  CAS  PubMed  Google Scholar 

  138. Ogunro PS, Ogungbamigbe TO, Elemie PO et al (2006) Plasma selenium concentration and glutathione peroxidase activity in HIV-1/AIDS infected patients: a correlation with the disease progression. Niger Postgrad Med J 13:1–5

    CAS  PubMed  Google Scholar 

  139. Taylor E, Cox A, Zhao L et al (2000) Nutrition, HIV, and drug abuse: the molecular basis of a unique role for selenium. J Acquir Immune Defic Syndr 25:53–61

    Google Scholar 

  140. de Menezes Barbosa EGM, Júnior FB, Machado AA, Navarro AM (2015) A longer time of exposure to antiretroviral therapy improves selenium levels. Clin Nutr 34:248–251. https://doi.org/10.1016/j.clnu.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  141. Batterham M, Gold J, Naidoo D, Lux O, Sadler S, Bridle S, Ewing M, Oliver C (2001) A preliminary open label dose comparison using an antioxidant regimen to determine the effect on viral load and oxidative stress in men HIV/AIDS. Eur J Clin Nutr 55:107–114. https://doi.org/10.1038/sj.ejcn.1601124

    Article  CAS  PubMed  Google Scholar 

  142. McClelland R, Baeten J, Overbaugh J et al (2004) Micronutrient supplementation increases genital tract shedding of HIV-1 in women: results of a randomized trial. J Acquir Immune Defic Syndr 37:1657–1663. https://doi.org/10.1097/00126334-200412150-00021

    Article  CAS  PubMed  Google Scholar 

  143. Baum MK, Campa A, Lai S et al (2013) Effect of micronutrient supplementation on disease progression in asymptomatic, antiretroviral-naive, HIV-infected adults in Botswana: a randomized clinical trial. J Am Med Assoc 310:2154–2163. https://doi.org/10.1001/jama.2013.280923

    Article  CAS  Google Scholar 

  144. Villamor E, Mugusi F, Urassa W et al (2008) A trial of the effect of micronutrient supplementation on treatment outcome, t cell counts, morbidity, and mortality in adults with pulmonary tuberculosis. J Infect Dis 197:1499–1506. https://doi.org/10.1086/587846

    Article  PubMed  PubMed Central  Google Scholar 

  145. Delmas-Beauvieux MC, Peuchant E, Couchouron A et al (1996) The enzymatic antioxidant system in blood and glutathione status in human immunodeficiency virus (HIV)-infected patients: effects of supplementation with selenium or β-carotene. Am J Clin Nutr 64:101–107. https://doi.org/10.1093/ajcn/64.1.101

    Article  CAS  PubMed  Google Scholar 

  146. Burbano X, Miguez-Burbano MJ, McCollister K et al (2002) Impact of a selenium chemoprevention clinical trial on hospital admissions of HIV-infected participants. HIV Clin Trials 3:483–491. https://doi.org/10.1310/a7lc-7c9v-ewkf-2y0h

    Article  PubMed  Google Scholar 

  147. Kupka R, Mugusi F, Aboud S, Hertzmark E, Spiegelman D, Fawzi WW (2009) Effect of selenium supplements on hemoglobin concentration and morbidity among HIV-1–infected Tanzanian women. Clin Infect Dis 48:1475–1478. https://doi.org/10.1086/598334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Look MP, Rockstroh JK, Rao GS, Barton S, Lemoch H, Kaiser R, Kupfer B, Sudhop T, Spengler U, Sauerbruch T (1998) Sodium selenite and N-acetylcysteine in antiretroviralnaive HIV-1- infected patients: a randomized, controlled pilot study. Eur J Clin Investig 28:389–397. https://doi.org/10.1046/j.1365-2362.1998.00301.x

    Article  CAS  Google Scholar 

  149. Kamwesiga J, Mutabazi V, Kayumba J, Tayari JC, Uwimbabazi JC, Batanage G, Uwera G, Baziruwiha M, Ntizimira C, Murebwayire A, Haguma JP, Nyiransabimana J, Nzabandora JB, Nzamwita P, Mukazayire E, Rwanda Selenium Authorship Group (2015) Effect of selenium supplementation on CD4+ T-cell recovery, viral suppression and morbidity of HIV-infected patients in Rwanda: a randomized controlled trial. AIDS 29:1045–1052. https://doi.org/10.1097/qad.0000000000000673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. House MJ, St. Pierre TG, McLean C (2008) 1.4T study of proton magnetic relaxation rates, iron concentrations, and plaque burden in Alzheimer’s disease and control postmortem brain tissue. Magn Reson Med 60:41–52. https://doi.org/10.1002/mrm.21586

    Article  CAS  PubMed  Google Scholar 

  151. Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A (2014) Iron levels in the human brain: a post-mortem study of age-related changes and anatomical region differences. J Trace Elem Med Biol 28:13–17

    CAS  PubMed  Google Scholar 

  152. Loeffler DA, Connor JR, Juneau PL et al (1995) Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. J Neurochem 65:710–716

    CAS  PubMed  Google Scholar 

  153. House MJ, St. Pierre TG, Kowdley KV et al (2007) Correlation of proton transverse relaxation rates (R2) with iron concentrations in postmortem brain tissue from Alzheimer’s disease patients. Magn Reson Med 57:172–180. https://doi.org/10.1002/mrm.21118

    Article  CAS  PubMed  Google Scholar 

  154. Wang D, Li YY, Luo JH, Li YH (2014) Age-related iron deposition in the basal ganglia of controls and Alzheimer disease patients quantified using susceptibility weighted imaging. Arch Gerontol Geriatr 59:439–449. https://doi.org/10.1016/j.archger.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  155. Miszkziel K, Paley MN, Wilkinson I et al (1997) The measurement of R-2, R-2* and R-2′ in HIV-infected patients using the prime sequence as a measure of brain iron deposition. Magn Reson Imaging 15:1113–1119

    Google Scholar 

  156. Semba RD, Kumwenda N, Hoover DR, Taha TE, Mtimavalye L, Broadhead R, Eisinger W, Miotti PG, Chiphangwi JD (2000) Assessment of iron status using plasma transferrin receptor in pregnant women with and without human immunodeficiency virus infection in Malawi. Eur J Clin Nutr 54:872–877. https://doi.org/10.1038/sj.ejcn.1601106

    Article  CAS  PubMed  Google Scholar 

  157. Kharb S, Kumawat M, Lallar M et al (2017) Serum iron, folate, ferritin and CD4 count in HIV seropositive women. Indian J Clin Biochem 32:95–98. https://doi.org/10.1007/s12291-016-0571-z

    Article  CAS  PubMed  Google Scholar 

  158. Sullivan PS, Hanson DL, Chu SY, Jones JL, Ward JW (1998) Epidemiology of anemia in human immunodeficiency virus (HIV)-infected persons: results from the multistate adult and adolescent spectrum of HIV disease surveillance project. Blood 91:301–308

    CAS  PubMed  Google Scholar 

  159. Moore R (1999) Human immunodeficiency virus infection, anemia, and survival. Clin Infect Dis 29:44–49. https://doi.org/10.1086/520178

    Article  CAS  PubMed  Google Scholar 

  160. Moore R, Forney D (2002) Anemia in HIV-infected patients receiving highly active antiretroviral therapy. J Acquir Immune Defic Syndr 29:54–57

    PubMed  Google Scholar 

  161. Boom J, Kösters E, Duncombe C et al (2007) Ferritin levels during structured treatment interruption of highly active antiretroviral therapy. HIV Med 8:388–395. https://doi.org/10.1111/j.1468-1293.2007.00481.x

    Article  CAS  PubMed  Google Scholar 

  162. Kamagate S, Bleyere MN, Kouakou LK et al (2012) Alteration of iron stores in women of reproductive age with HIV in Abidjan (Côte D’ivoire). Int J Biomol Biomed 2:1–12

    Google Scholar 

  163. Ellaurie M, Rubinstein A (1994) Ferritin levels in pediatric HIV-1 infection. Acta Paediatr 83:1035–1037. https://doi.org/10.1111/j.1651-2227.1994.tb12978.x

    Article  CAS  PubMed  Google Scholar 

  164. Delanghe J, Langlois M, Boelaert J, van Acker J, van Wanzeele F, van der Groen G, Hemmer R, Verhofstede C, de Buyzere M, de Bacquer D, Arendt V, Plum J (1998) Haptoglobin polymorphism, iron metabolism and mortality in HIV infection. Aids 12:1027–1032. https://doi.org/10.1097/00002030-199809000-00010

    Article  CAS  PubMed  Google Scholar 

  165. Castaldo A, Tarallo L, Palomba E, Albano F, Russo S, Zuin G, Buffardi F, Guarino A (1996) Iron deficiency and intestinal malabsorption in HIV disease. J Pediatr Gastroenterol Nutr 22:359–363

    CAS  PubMed  Google Scholar 

  166. Welsch S, Groot F, Kräusslich H, Keppler OT, Sattentau QJ (2011) Architecture and regulation of the HIV-1 assembly and holding compartment in macrophages. J Virol 85:7922–7927. https://doi.org/10.1128/jvi.00834-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Olsen A, Nawiri J, Friis H (2000) The impact of iron supplementation on reinfection with intestinal helminths and Schistosoma mansoni in Western Kenya. Trans R Soc Trop Med Hyg 94:493–499. https://doi.org/10.1016/S0035-9203(00)90063-4

    Article  CAS  PubMed  Google Scholar 

  168. Olsen A, Mwaniki D, Krarup H, Friis H (2004) Low-dose iron supplementation does not increase HIV-1 load. J Acquir Immune Defic Syndr 36:637–638. https://doi.org/10.1097/00126334-200405010-00013

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received financial assistance from the National Research Foundation (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Cilliers.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Health Research Ethics Committee, Stellenbosch University, S17/09/183) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of Interest

The authors declare that they have no conflict of interest.

Disclaimer

Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the NRF.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cilliers, K., Muller, C.J.F. Effect of Human Immunodeficiency Virus on Trace Elements in the Brain. Biol Trace Elem Res 199, 41–52 (2021). https://doi.org/10.1007/s12011-020-02129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02129-4

Keywords

Navigation