Skip to main content
Log in

The Effects of Selenium in Acrylamide-Induced Nephrotoxicity in Rats: Roles of Oxidative Stress, Inflammation, Apoptosis, and DNA Damage

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We sought to determine the effects of selenium (Se) on acrylamide (ACR)-induced nephrotoxicity in rats. In our study, 50 adult male Sprague-Dawley rats weighing 200–250 g were randomly divided into five groups. The control group was given intra-gastric (i.g.) saline (1 mL) for 10 days. The ACR group was given i.g. ACR in saline (38.27 mg/kg titrated to 1 mL) for 10 days. The Se0.5 + ACR and Se1 + ACR groups were administered Se in saline (0.5 and 1 mg/kg, respectively) for 10 days and given i.g. ACR (38.27 mg/kg) one hour after the Se injections. The Se1 group was administered i.g. Se (1 mg/kg) for 10 days. On day 11, intracardiac blood samples were obtained from the rats while they were under anesthesia, after which they were euthanized by decapitation. Urea and creatinine concentrations of blood serum samples were analyzed with an autoanalyzer. Enzyme-linked immunosorbence immunosorbent assay (ELISA) was used to quantify malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB), interleukin (IL)-33, IL-6, IL-1β, cyclooxygenase-2 (COX-2), kidney injury molecule-1 (KIM-1), mitogen-activated protein kinase-1 (MAPK-1), and caspase-3 in kidney tissues. Renal tissues were evaluated by histopathological and immunohistochemical examinations for 8-hydroxylo-2′-deoxyguanosin 8-hydroxy-2′-deoxyguanosine (8-OhDG) and Bax. Serum urea and creatinine levels were higher in the ACR group than in the control, and these ACR-induced increases were prevented by high doses of Se. Additionally, ACR induced the renal oxidative stress, inflammation, apoptosis, and damage to DNA and tissue; likewise, these were prevented by high doses of Se. Taken with ACR, Se confers protection against ACR-induced nephrotoxicity in rats by reducing oxidative stress, inflammation, apoptosis, and DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Riboldi BP, Vinhas AM, Moreira JD (2014) Risks of dietary acrylamide exposure: a systematic review. Food Chem 157:310–322

    Article  CAS  PubMed  Google Scholar 

  2. Tepe Y, Çebi A (2019) Acrylamide in environmental water: a review on sources, exposure, and public health risks. Exposure Health 11(1):3–12

    Article  CAS  Google Scholar 

  3. Yerlikaya FH, Toker A, Yener Y (2013) Effects of acrylamide treatment on oxidant and antioxidant levels in rats. Kafkas Univ Vet Fak Derg 19(4):607–612

    Google Scholar 

  4. Kjuus H, Hansteen IL, Ryberg D, Goffeng LO, Øvrebø S, Skaug V (2005) Chromosome aberrations in tunnel workers exposed to acrylamide and N-methylolacrylamide. Scand J Work Environ Health 31(4):300–306

    Article  CAS  PubMed  Google Scholar 

  5. Schettgen T, Weiss T, Drexler H, Angerer J (2003) A first approach to estimate the internal exposure to acrylamide in smoking and non-smoking adults from Germany. Int J Hyg Environ Health 206(1):9–14

    Article  CAS  PubMed  Google Scholar 

  6. Rydberg P, Eriksson S, Tareke E, Karlsson P, Ehrenberg L, Törnqvist M (2003) A first approach to estimate the internal exposure to acrylamide in smoking and non-smoking adults froand. Food Chem 51(24):7012–7018

    Article  CAS  Google Scholar 

  7. Becalski A, Lau BPY, Lewis D, Seaman SW (2003) Acrylamide in foods: occurrence, sources, and modeling. J Agric Food Chem 51(3):802–808

    Article  CAS  PubMed  Google Scholar 

  8. Dortaj H, Anvari M, Yadegari M, Hosseini Sharifabad M, Abbasi Sarcheshmeh A (2017) Stereological survey of the effect of vitamin C on neonatal rat kidney tissue treated with acrylamide. Mod Med Lab J 1(2):42–49

    Article  Google Scholar 

  9. Bortolomeazzi R, Munari M, Anese M, Verardo G (2012) Rapid mixed mode solid phase extraction method for the determination of acrylamide in roasted coffee by HPLC–MS/MS. Food Chem 135:2687–2693

    Article  CAS  PubMed  Google Scholar 

  10. Brunton NP, Gormley R, Butler F et al (2007) A survey of acrylamide precursors in Irish ware potatoes and acrylamide levels in French fries. Food Sci Technol 40:1601–1609

    CAS  Google Scholar 

  11. Santhanasabapathy R, Vasudevan S, Anupriya K, Pabitha R, Sudhandiran G (2015) Farnesol quells oxidative stress, reactive gliosis and inflammation during acrylamide-induced neurotoxicity: behavioral and biochemical evidence. Neuroscience 308:212–227

    Article  CAS  PubMed  Google Scholar 

  12. Totani N, Yawata M, Ojiri Y, Fujioka Y (2007) Effects of trace acrylamide intake in Wistar rats. J Oleo Sci 56:501–516

    Article  CAS  PubMed  Google Scholar 

  13. Mansour MK, Ibrahim EM, El-Kholy MM, El-Madawy SA (2008) Antioxidant and histopathological effect of catechin and neem leaves extract in acrylamide toxicity of rats. Egypt J Comp and Clinic Pathol 21:290–313

    Google Scholar 

  14. Abdel-Daim MM, Abd Eldaim MA, Hassan AG (2014) Trigonella foenum-graecum ameliorates acrylamide-induced toxicity in rats: roles of oxidative stress, proinflammatory cytokines, and DNA damage. Biochem Cell Biol 93(3):192–198

    Article  PubMed  CAS  Google Scholar 

  15. Rajeh NA, Al-Dhaheri NM (2017) Antioxidant effect of vitamin E and 5aminosalicylic acid on acrylamide induced kidney injury in rats. Saudi Med J 38(2):132–137

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ghorbel I, Elwej A, Fendri N, Mnif H, Jamoussi K, Boudawara T, Grati Kamoun N, Zeghal N (2016) Olive oil abrogates acrylamide induced nephrotoxicity by modulating biochemical and histological changes in rats. Ren Fail 39(1):236–245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Atef H, Attia GM, Rezk HM, El-Shafey M (2017) Effect of vitamin E on biochemical and ultrastructural changes in acrylamide-induced renal toxicity in rats. Int J Sci Rep 3(5):134–143

    Article  Google Scholar 

  18. Wan H, Zhu Y, Chen P, Wang Y, Hao P, Cheng Z et al (2017) Effect of various selenium doses on chromium (IV)-induced nephrotoxicity in a male chicken model. Chemosphere 174:306–314

    Article  CAS  PubMed  Google Scholar 

  19. Kamel KM, Fawzy HM, Metwally SA, El-Latif HAA, El-sayed ME (2015) Protective effects of onion oil and selenium against cisplatin-induced nephrotoxicity and oxidative stress in rats. Egypt J Hosp Med 58:18–25

    Article  Google Scholar 

  20. Gunes S, Sahinturk V, Uslu S, Ayhanci A, Kacar S, Uyar R (2018) Protective effects of selenium on cyclophosphamide-induced oxidative stress and kidney injury. Biol Trace Elem Res 185(1):116–123

    Article  CAS  PubMed  Google Scholar 

  21. Liu L, Yang B, Cheng Y, Lin H (2015) Ameliorative effects of selenium on cadmium-induced oxidative stress and endoplasmic reticulum stress in the chicken kidney. Biol Trace Elem Res 167(2):308–319

    Article  CAS  PubMed  Google Scholar 

  22. Soudani N, Troudi A, Bouaziz H, Ben Amara I, Boudawara T, Zeghal N (2011) Cardioprotective effects of selenium on chromium (VI)-induced toxicity in female rats. Ecotoxicol Environ Saf 74:513–520

    Article  CAS  PubMed  Google Scholar 

  23. Tyszka-Czochara M, Pasko P, Zagrodzki P, Gajdzik E, Wietecha-Posluszny R, Gorinstein S (2016) Selenium supplementation of amaranth sprouts influences betacyanin content and improves anti-inflammatory properties via NFκB in murine RAW 264.7 macrophages. Biol Trace Elem Res 169(2):320–330

    Article  CAS  PubMed  Google Scholar 

  24. El-Ghazaly MA, Fadel N, Rashed E, El-Batal A, Kenawy SA (2016) Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can J Physiol Pharmacol 95(2):101–110

    Article  PubMed  CAS  Google Scholar 

  25. Kim Y, Kim DC, Cho ES, Ko SO, Kwon WY, Suh GJ, Shin HK (2014) Antioxidant and anti-inflammatory effects of selenium in oral buccal mucosa and small intestinal mucosa during intestinal ischemia-reperfusion injury. J Inflamm 11(1):36

    Article  CAS  Google Scholar 

  26. Demirci K, Nazıroğlu M, Övey İS, Balaban H (2017) Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia. Metab Brain Dis 32(2):321–329

    Article  CAS  PubMed  Google Scholar 

  27. Jin X, Xu Z, Zhao X, Chen M, Xu S (2017) The antagonistic effect of selenium on lead-induced apoptosis via mitochondrial dynamics pathway in the chicken kidney. Chemosphere 180:259–266

    Article  CAS  PubMed  Google Scholar 

  28. Balaban H, Nazıroğlu M, Demirci K, Övey İS (2017) The protective role of selenium on scopolamine-induced memory impairment, oxidative stress, and apoptosis in aged rats: the involvement of TRPM2 and TRPV1 channels. Mol Neurobiol 54(4):2852–2868

    Article  CAS  PubMed  Google Scholar 

  29. Uthra C, Shrivastava S, Jaswal A, Sinha N, Reshi MS, Shukla S (2017) Therapeutic potential of quercetin against acrylamide induced toxicity in rats. Biomed Pharmacother 86:705–714

    Article  CAS  PubMed  Google Scholar 

  30. Sengul E, Gelen SU, Yıldırım S, Çelebi F, Çınar A (2019) Probiotic bacteria attenuates cisplatin-induced nephrotoxicity through modulation of oxidative stress, inflammation and apoptosis in rats. Asian Pac J Trop Biomed 9(3):116

    Article  CAS  Google Scholar 

  31. Gelen V, Şengül E, Gedikli S, Gür C, Özkanlar S (2017) Therapeutic effect of quercetin on renal function and tissue damage in the obesity induced rats. Biomed Pharmacother 89:524–528

    Article  CAS  PubMed  Google Scholar 

  32. Mahgoub E, Kumaraswamy SM, Kader KH, Venkataraman B, Ojha S, Adeghate E, Rajesh M (2017) Genipin attenuates cisplatin-induced nephrotoxicity by counteracting oxidative stress, inflammation, and apoptosis. Biomed Pharmacother 93:1083–1097

    Article  CAS  PubMed  Google Scholar 

  33. Morel G, Ban M, Bonnet P, Zissu D, Brondeau MT (2005) Effect of β-naphthoflavone and phenobarbital on the nephrotoxicity of chlorotrifluoroethylene and 1, 1-dichloro-2, 2-difluoroethylene in the rat. J Appl Toxicol 25:153–165

    Article  CAS  PubMed  Google Scholar 

  34. Gelen V, Sengul E, Yildirim S, Atila G (2018) The protective effects of naringin against 5-fluorouracil-induced hepatotoxicity and nephrotoxicity in rats. Iran J Basic Med Sci 21:404–410

    PubMed  PubMed Central  Google Scholar 

  35. Hagiwara S, Koga H, Iwasaka H, Kudo K, Hasegawa A, Kusaka J, Yokoi I, Noguchi T (2011) ETS-GS, a new antioxidant, ameliorates renal ischemia-reperfusion injury in a rodent model. J Surg Res 171:226–233

    Article  CAS  PubMed  Google Scholar 

  36. Kara A, Gedikli S, Sengul E, Gelen V, Ozkanlar S (2016) Oxidative stress and autophagy, 1st edn. InTechOpen, Free Radicals and Diseases, London, pp 69–86

    Google Scholar 

  37. Elhelaly AE, AlBasher G, Alfarraj S, Almeer R, Bahbah EI, Fouda MM et al (2019) Protective effects of hesperidin and diosmin against acrylamide-induced liver, kidney, and brain oxidative damage in rats. Environ Sci Pollut Res Int 26(34):1–12

    Article  CAS  Google Scholar 

  38. Soudani N, Sefi M, Amara IB, Boudawara T, Zeghal N (2010) Protective effects of selenium (Se) on chromium (VI) induced nephrotoxicity in adult rats. Ecotoxicol Environ Saf 73(4):671–678

    Article  CAS  PubMed  Google Scholar 

  39. El-Boshy ME, Risha EF, Abdelhamid FM, Mubarak MS, Hadda TB (2015) Protective effects of selenium against cadmium induced hematological disturbances, immunosuppressive, oxidative stress and hepatorenal damage in rats. J Trace Elem Med Biol 29:104–110

    Article  CAS  PubMed  Google Scholar 

  40. Gan L, Liu Q, Xu HB, Zhu YS, Yang XL (2002) Effects of selenium overexposure on glutathione peroxidase and thioredoxin reductase gene expressions and activities. Biol Trace Elem Res 89(2):165–175

    Article  CAS  PubMed  Google Scholar 

  41. Ikram N, Khalid H, Samina T (2004) Review article cytokines. Int J Pathol 1:47–58

    Google Scholar 

  42. Moussion C, Ortega N, Girard J-P (2008) The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS One 3:e3331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lamkanfi M, Dixit VM (2009) IL-33 raises alarm. Immunity 31:5–7

    Article  CAS  PubMed  Google Scholar 

  44. Ghorbel I, Maktouf S, Kallel C, Chaabouni SE, Boudawara T, Zeghal N (2015) Disruption of erythrocyte antioxidant defense system, hematological parameters, induction of pro-inflammatory cytokines and DNA damage in liver of co-exposed rats to aluminium and acrylamide. Chem Biol Interact 236:31–40

    Article  CAS  PubMed  Google Scholar 

  45. Kandemir FM, Kucukler S, Eldutar E, Caglayan C, Gülçin I (2017) Chrysin protects rat kidney from paracetamol-induced oxidative stress, inflammation, apoptosis, and autophagy: a multi-biomarker approach. Sci Pharm 85(1):4

    Article  PubMed Central  CAS  Google Scholar 

  46. Zhou X, Wang Z, Chen J, Wang W, Song D, Li S, Chen C (2014) Increased levels of IL-6, IL-1β, and TNF-α in Kashin–Beck disease and rats induced by T-2 toxin and selenium deficiency. Rheumatol Int 34(7):995–1004

    Article  CAS  PubMed  Google Scholar 

  47. Kopp EB, Ghosh S (1995) NF-κB and rel proteins in innate immunity. Adv Immunol 58:1–27

    Article  CAS  PubMed  Google Scholar 

  48. Kalayarasan S, Prabhu PN, Sriram N, Manikandan R, Arumugam M, Sudhandiran G (2009) Diallyl sulfide enhances antioxidants and inhibits inflammation through the activation of Nrf2 against gentamicin-induced nephrotoxicity in Wistar rats. Eur J Pharmacol 606(1–3):162–171

    Article  CAS  PubMed  Google Scholar 

  49. Zhao M, Wang FSL, Hu XS, Chen F, Chan HM (2017) Effect of acrylamide-induced neurotoxicity in a primary astrocytes/microglial co-culture model. Toxicol in Vitro 39:119–125

    Article  PubMed  CAS  Google Scholar 

  50. Bi CL, Wang H, Wang YJ, Sun J, Dong JS, Meng X, Li JJ (2016) Selenium inhibits Staphylococcus aureus-induced inflammation by suppressing the activation of the NF-κB and MAPK signalling pathways in RAW264. 7 macrophages. Eur J Pharmacol 780:159–165

    Article  CAS  PubMed  Google Scholar 

  51. Lim TG, Lee BK, Kwon JY, Jung SK, Lee KW (2011) Acrylamide up-regulates cyclooxygenase-2 expression through the MEK/ERK signaling pathway in mouse epidermal cells. Food Chem Toxicol 49(6):1249–1254

    Article  CAS  PubMed  Google Scholar 

  52. He Y, Tan D, Mi Y, Zhou Q, Ji S (2017) Epigallocatechin-3-gallate attenuates cerebral cortex damage and promotes brain regeneration in acrylamide-treated rats. Food Funct 8(6):2275–2282

    Article  CAS  PubMed  Google Scholar 

  53. Wang D, Qi J, Pan X, Yan D, Yan H (2016) The antagonistic effect and mechanism of N-acetylcysteine on acrylamide-induced hepatic and renal toxicity. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 34(1):13–17

    CAS  PubMed  Google Scholar 

  54. Saif-Elnasr M, Abdel-Aziz N, El-Batal AI (2019) Ameliorative effect of selenium nanoparticles and fish oil on cisplatin and gamma irradiation-induced nephrotoxicity in male albino rats. Drug Chem Toxicol 42(1):94–103

    Article  CAS  PubMed  Google Scholar 

  55. Khalaf AA, Ahmed WMS, Moselhy WA, Abdel-Halim BR, Ibrahim MA (2019) Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. Hum Exp Toxicol 38(4):398–408

    Article  CAS  PubMed  Google Scholar 

  56. Bonventre JV, Yang L (2010) Kidney injury molecule-1. Curr Opin Crit Care 16(6):556–561

    Article  PubMed  Google Scholar 

  57. Kim KS, Lim HJ, Lim JS, Son JY, Lee J, Lee BM, Chang SC, Kim HS (2018) Curcumin ameliorates cadmium-induced nephrotoxicity in Sprague-Dawley rats. Food Chem Toxicol 114:34–40

    Article  CAS  PubMed  Google Scholar 

  58. Shanu A, Groebler L, Kim HB, Wood S, Weekley CM, Aitken JB, Harris HH, Witting PK (2013) Selenium inhibits renal oxidation and inflammation but not acute kidney injury in an animal model of rhabdomyolysis. Antioxid Redox Signal 18(7):756–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim EK, Choi EJ (2015) Compromised MAPK signaling in human diseases: an update. Arch Toxicol 89(6):867–882

    Article  CAS  PubMed  Google Scholar 

  60. Liu J, Chang F, Li F, Fu H, Wang J, Zhang S, Zhao J, Yin D (2015) Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK. Biochem Biophys Res Commun 463(3):262–267

    Article  CAS  PubMed  Google Scholar 

  61. Sui X, Kong N, Ye L, Han W, Zhou J, Zhang Q, He C, Pan H (2014) p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett 344(2):174–179

    Article  CAS  PubMed  Google Scholar 

  62. Yang GS, Wang W, Wang YM, Chen ZD, Wang S, Fang JJ (2006) Effect of cocaine on germ cell apoptosis in rats at different ages. Asian J Androl 8(5):569–575

    Article  CAS  PubMed  Google Scholar 

  63. Li SX, Cui N, Zhang CL, Zhao XL, Yu SF, Xie KQ (2006) Effect of subchronic exposure to acrylamide induced on the expression of bcl-2, bax and caspase-3 in the rat nervous system. Toxicology 217(1):46–53

    Article  CAS  PubMed  Google Scholar 

  64. Seydi E, Rajabi M, Salimi A, Pourahmad J (2015) Involvement of mitochondrial-mediated caspase-3 activation and lysosomal labilization in acrylamide-induced liver toxicity. Toxicol Environ Chem 97(5):563–575

    Article  CAS  Google Scholar 

  65. Ren H, Mu J, Ma J, Gong J, Li J, Wang J, Gao T, Zhu P, Zheng S, Xie J, Yuan B (2016) Selenium in-hibits homocysteine-induced endothelial dysfunction and apopto-sis via activation of AKT. Cell Physiol Biochem 38(3):871–882

    Article  CAS  PubMed  Google Scholar 

  66. Ghorbel I, Maktouf S, Fendri N, Jamoussi K, Ellouze Chaabouni S, Boudawara T, Zeghal N (2016) Co-exposure to aluminum and acrylamide disturbs expression of metallothionein, proinflammatory cytokines and induces genotoxicity: biochemical and histopathological changes in the kidney of adult rats. Environ Toxicol 31(9):1044–1058

    Article  CAS  PubMed  Google Scholar 

  67. Alturfan AA, Tozan-Beceren A, Şehirli AÖ, Demiralp E, Şener G, Omurtag GZ (2012) Resveratrol ameliorates oxidative DNA damage and protects against acrylamide-induced oxidative stress in rats. Mol Biol Rep 39(4):4589–4596

    Article  CAS  PubMed  Google Scholar 

  68. Stepniak J, Karbownik-Lewinska M (2016) 17 β-estradiol prevents experimentally-induced oxidative damage to membrane lipids and nuclear DNA in porcine ovary. Syst Biol Reprod Med 62:17–21

    Article  CAS  PubMed  Google Scholar 

  69. Ince S, Arslan Acaroz D, Neuwirth O, Hasan Hüseyin D, Barıs D, İsmail K et al (2014) Protective effect of polydatin, a natural precursor of resveratrol, against cisplatin induced toxicity in rats. Food Chem Toxicol 72:147–153

    Article  CAS  PubMed  Google Scholar 

  70. Yang SY, Zhang L, Miao KK, Qian W, Zhang ZG (2013) Effects of selenium intervention on chronic fluorosis-induced renal cell apoptosis in rats. Biol Trace Elem Res 153(1–3):237–242

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Atatürk University Scientific Research Projects Coordinator (Project No: 2019/7021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emin Sengul.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Ethical Approval

This study was approved by the Atatürk University Rectorate Animal Experiments Local Ethics Committee (Ethics code: 2018/205).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengul, E., Gelen, V., Yildirim, S. et al. The Effects of Selenium in Acrylamide-Induced Nephrotoxicity in Rats: Roles of Oxidative Stress, Inflammation, Apoptosis, and DNA Damage. Biol Trace Elem Res 199, 173–184 (2021). https://doi.org/10.1007/s12011-020-02111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02111-0

Keywords

Navigation