Skip to main content

Advertisement

Log in

Chronic Iron Overload Restrains the Benefits of Aerobic Exercise to the Vasculature

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Physical exercise is a well-recognized effective non-pharmacological therapy for cardiovascular diseases. However, because iron is essential element in many physiological processes including hemoglobin and myoglobin synthesis, thereby playing a role on oxygen transport, many athletes use iron supplement to improve physical performance. Regarding this, iron overload is associated with oxidative stress and damage to various systems, including cardiovascular. Thus, we aimed to identify the vascular effects of aerobic exercise in a rat model of iron overload. Male Wistar rats were treated with 100 mg/kg/day iron-dextran, i.p., 5 days a week for 4 weeks, and then underwent aerobic exercise protocol on a treadmill at moderate intensity, 60 min/day, 5 days a week for 8 weeks. Exercise reduced vasoconstrictor response of isolated aortic rings by increasing participation of nitric oxide (NO) and reducing oxidative stress, but these benefits to the vasculature were not observed in rats previously subjected to iron overload. The reduced vasoconstriction in the exercised group was reversed by incubation with superoxide dismutase (SOD) inhibitor, suggesting that increased SOD activity by exercise was lost in iron overload rats. Iron overload groups increased serum levels of iron, transferrin saturation, and iron deposition in the liver, gastrocnemius muscle, and aorta, and the catalase was overexpressed in the aorta probably as a compensatory mechanism to the increased oxidative stress. In conclusion, despite the known beneficial effects of aerobic exercise on vasculature, our results indicate that previous iron overload impeded the anticontractile effect mediated by increased NO bioavailability and endogenous antioxidant response due to exercise protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR et al (2019) Heart disease and stroke statistics update: a report from the American Heart Association. Circulation 139(10):e56–e528. https://doi.org/10.1161/CIR.0000000000000659

    Article  PubMed  Google Scholar 

  2. Stevens B, Pezzullo L, Verdian L, Tomlinson J, George A, Bacal F (2018) The economic burden of heart conditions in Brazil. Arq Bras Cardiol 111(1):29–36. https://doi.org/10.5935/abc.20180104

    Article  PubMed  PubMed Central  Google Scholar 

  3. Green DJ, Maiorana A, O'Driscoll G, Taylor R (2004) Effect of exercise training on endothelium derived nitric oxide function in humans. J Physiol J Physiol 561(1):1–25. https://doi.org/10.1113/jphysiol.2004.068197

    Article  CAS  PubMed  Google Scholar 

  4. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  5. Thijssen DH, Maiorana AJ, O'Driscoll G, Cable NT, Hopman MT, Green DJ (2010) Impact of inactivity and exercise on the vasculature in humans. Eur J Appl Physiol 108(5):845–875. https://doi.org/10.1007/s00421-009-1260-x

    Article  PubMed  Google Scholar 

  6. Rush JWE, Denniss SG, Graham DA (2005) Vascular nitric oxide and oxidative stress: determinants of endothelial adaptations to cardiovascular disease and to physical activity. Can J Appl Physiol 30(4):442–474. https://doi.org/10.1139/h05-133

    Article  CAS  PubMed  Google Scholar 

  7. Tinken TM, Thijssen DH, Hopkins N, Dawson EA, Cable NT, Green DJ (2010) Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension 55(2):312–318. https://doi.org/10.1161/HYPERTENSIONAHA.109.146282

    Article  CAS  PubMed  Google Scholar 

  8. Erbs S, Höllriegel R, Linke A, Beck EB, Adams V, Gielen S, Möbius-Winkler S, Sandri M, Kränkel N, Hambrecht R, Schuler G (2010) Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circ Heart Fail 3(4):486–494. https://doi.org/10.1161/CIRCHEARTFAILURE.109.868992

    Article  PubMed  Google Scholar 

  9. Campos JC, Queliconi BB, Dourado PMM, Cunha TF, Zambelli VO, Bechara LRG, Kowaltowski AJ, Brum PC, Mochly-Rosen D, Ferreira JCB (2012) Exercise training restores cardiac protein quality control in heart failure. PLoS One 7(12):e52764. https://doi.org/10.1371/journal.pone.0052764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schneider CD, Oliveira AR (2004) Oxygen free radicals and exercise: mechanisms of synthesis and adaptation to the physical training. Rev Bras Med Esporte 10(4):308–313. https://doi.org/10.1590/S1517-86922004000400008

    Article  Google Scholar 

  11. Bechara LRG, Tanaka LY, dos Santos AM, Jordão CP, de Sousa LGO, Bartholomeu T, Ramires PR (2008) A single bout of moderate-intensity exercise increases vascular NO bioavailability and attenuates adrenergic receptor-dependent and -independent vasoconstrictor response in rat aorta. J Smooth Muscle Res 44(3–4):101–111. https://doi.org/10.1540/jsmr.44.101

    Article  PubMed  Google Scholar 

  12. Bertagnolli M, Schenkel PC, Campos C, Mostarda CT, Casarini DE, BellóKlein A et al (2008) Exercise training reduces sympathetic modulation on cardiovascular system and cardiac oxidative stress in spontaneously hypertensive rats. Am J Hypertens 21(11):1188–1193. https://doi.org/10.1038/ajh.2008.270

    Article  CAS  PubMed  Google Scholar 

  13. Yang L, Lo CW, Lee JT, Su CT (2011) Enhancement of vasorelaxation in hypertension following high-intensity exercise. Chin J Phys 54(2):87–95. https://doi.org/10.4077/cjp.2011.amm011

    Article  CAS  Google Scholar 

  14. Braga VA, Couto GK, Lazzarin MC, Rossoni LV, Medeiros A (2015) Aerobic exercise training prevents the onset of endothelial dysfunction via increased nitric oxide bioavailability and reduced reactive oxygen species in an experimental model of menopause. PLoS One 10(4):1–13. https://doi.org/10.1371/journal.pone.0125388

    Article  CAS  Google Scholar 

  15. Tanaka LY, Bechara LR, dos Santos AM, Jordão CP, de Sousa LG, Bartholomeu T et al (2015) Exercise improves endothelial function: a local analysis of production of nitric oxide and reactive oxygen species. Nitric Oxide 45:7–14. https://doi.org/10.1016/j.niox.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  16. Jordão CP, Fernandes T, Tanaka LY, Bechara LRG, de Sousa LGO, Oliveira EM, Ramires PR (2017) Aerobic swim training restores aortic endothelial function by decreasing superoxide levels in spontaneously hypertensive rats. Clinics 72(5):310–316. https://doi.org/10.6061/clinics/2017(05)09

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tanaka H, Seals DR, Monahan KD, Clevenger CM, DeSouza CA, Dinenno FA (2002) Regular aerobic exercise and the age-related increase in carotid intimamedia thickness in healthy men. J Appl Physiol 92(4):1458–1464. https://doi.org/10.1152/japplphysiol.00824.2001

    Article  PubMed  Google Scholar 

  18. Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR (2000) Aging, habitual exercise, and dynamic arterial compliance. Circulation 102(11):1270–1275. https://doi.org/10.1161/01.CIR.102.11.1270

    Article  CAS  PubMed  Google Scholar 

  19. Roque FR, Briones AM, García-Redondo AB, Galán M, Martínez-Revelles S, Avendaño MS, Cachofeiro V, Fernandes T, Vassallo DV, Oliveira EM, Salaices M (2013) Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol 168(3):686–703. https://doi.org/10.1111/j.1476-5381.2012.02224.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fujii T, Matsuo T, Okamura K (2012) The effects of resistance exercise and post-exercise meal timing on the iron status in iron-deficient rats. Biol Trace Elem Res 147(1–3):200–205. https://doi.org/10.1007/s12011-011-9285-5

    Article  CAS  PubMed  Google Scholar 

  21. DellaValle DM (2013) Iron supplementation for female athletes: effects on iron status and performance outcomes. Curr Sports Med Rep 12(4):234–239. https://doi.org/10.1249/JSR.0b013e31829a6f6b

    Article  PubMed  Google Scholar 

  22. Díaz V, Peinado AB, Barba-Moreno L, Altamura S, Butragueño J, González-Gross M, Alteheld B, Stehle P, Zapico AG, Muckenthaler MU, Gassmann M (2015) Elevated hepcidin serum level in response to inflammatory and iron signals in exercising athletes is independent of moderate supplementation with vitamin C and E. Phys Rep 3(8):1–6. https://doi.org/10.14814/phy2.12475

    Article  CAS  Google Scholar 

  23. Burden RJ, Morton K, Richards T, Whyte GP, Pedlar CR (2015) Is iron treatment beneficial in, iron-deficient but non-anaemic (IDNA) endurance athletes? A systematic review and meta-analysis. Br J Sports Med 49(21):1389–1397. https://doi.org/10.1136/bjsports-2014-093624

    Article  PubMed  Google Scholar 

  24. Peeling P, Sim M, Badenhorst CE, Dawson B, Govus AD et al (2014) Iron status and the acute post-exercise hepcidin response in athletes. PLoS ONE 9(3):e93002. https://doi.org/10.1371/journal.pone.0093002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kobayashi Y, Nakatsuji A, Aoi W, Wada S, Kuwahata M, Kido Y (2014) Intense exercise increases protein oxidation in spleen and liver of mice. Nutr Metab Insights 7:1–6. https://doi.org/10.4137/NMi.s13668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Camaschella C (2015) Iron deficiency anemia. N Engl J Med 372(19):1832–1843. https://doi.org/10.1056/NEJMra1401038

    Article  PubMed  Google Scholar 

  27. Alaunyte I, Stojceska V, Plunkett A (2015) Iron and the female athlete: a review of dietary treatment methods for improving iron status and exercise performance. J Int Soc Sports Nutr 12:38. https://doi.org/10.1186/s12970-015-0099-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Auersperger I, Branko S, Leskosek B, Knap B, Jerin A, Lainscak M (2013) Exercise-induced changes in iron status and hepcidin response in female runners. PLoS One 8(3):e58090. https://doi.org/10.1371/journal.pone.0058090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Siddique A, Kowdley KV (2012) Review article: the iron overload syndromes. Aliment Pharmacol Ther 35(8):876–893. https://doi.org/10.1111/j.13652036.2012.05051.x

    Article  CAS  PubMed  Google Scholar 

  30. Marques VB, Nascimento TB, Ribeiro Junior RF, Broseghini-Filho GB, Rossi EM, Graceli JB, dos Santos L (2015) Chronic iron overload in rats increases vascular reactivity by increasing oxidative stress and reducing nitric oxide bioavailability. Life Sci 143:89–97. https://doi.org/10.1016/j.lfs.2015.10.034

    Article  CAS  PubMed  Google Scholar 

  31. Rossi EM, Marques VB, Nunes DO, Carneiro MT, Podratz PL, Merlo E, dos Santos L, Graceli JB (2016) Acute iron overload leads to hypothalamic-pituitary-gonadal axis abnormalities in female rats. Toxicol Lett 240(1):196–213. https://doi.org/10.1016/j.toxlet.2015.10.027

    Article  CAS  PubMed  Google Scholar 

  32. Avila RA, Silva MASC, Peixoto JV, Kassouf-Silva I, Fogaça RTH, dos Santos L (2016) Mechanisms involved in the in vitro contractile dysfunction induced by different concentrations of ferrous iron in the rat myocardium. Toxicol in Vitro 36:38–45. https://doi.org/10.1016/j.tiv.2016.07.003B

    Article  CAS  PubMed  Google Scholar 

  33. Bartfay WJ, Bartfay E (2000) Iron-overload cardiomyopathy: evidence for a free radical--mediated mechanism of injury and dysfunction in a murine model. Biol Res Nurs 2(1):49–59. https://doi.org/10.1177/109980040000200106

    Article  CAS  PubMed  Google Scholar 

  34. Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93(4):1721–1741. https://doi.org/10.1152/physrev.00008.2013

    Article  CAS  PubMed  Google Scholar 

  35. Kramer JH, Spurney CF, Iantorno M, Tziros C, Chmielinska JJ, Mak IT, Weglicki WB (2012) d-Propranolol protects against oxidative stress and progressive cardiac dysfunction in iron overloaded rats. Can J Physiol Pharmacol 90(9):1257–1268. https://doi.org/10.1139/y2012-091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shazia QQ, Mohammad ZH, Rahman T, Shekhar HU (2012) Correlation of oxidative stress with serum trace element levels and antioxidant enzyme status in beta thalassemia major patients: a review of the literature. Anemia 2012:270923. https://doi.org/10.1155/2012/270923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gudjoncik A, Guenancia C, Zeller M, Cottin Y, Vergely C, Rochette L (2014) Iron, oxidative stress, and redox signaling in the cardiovascular system. Mol Nutr Food Res 58(8):1721–1738. https://doi.org/10.1002/mnfr.201400036

    Article  CAS  PubMed  Google Scholar 

  38. Ribeiro Júnior RF, Marques VB, Nunes DO, Stefanon I, dos Santos L (2017) Chronic iron overload induces functional and structural vascular changes in small resistance arteries via NADPH oxidase-dependent O2- production. Toxicol Lett 279:43–52. https://doi.org/10.1016/j.toxlet.2017.07.497

    Article  CAS  PubMed  Google Scholar 

  39. Gaenzer H, Marschang P, Sturm W, Neumayr G, Vogel W, Patsch J, Weiss G (2002) Association between increased iron stores and impaired endothelial function in patients with hereditary hemochromatosis. J Am Coll Cardiol 40(12):2189–2194. https://doi.org/10.1016/S0735-1097(02)02611-6

    Article  CAS  PubMed  Google Scholar 

  40. Bertoli SR, Marques VB, Rossi EM, Carneiro MT, Simões MR, dos Santos L (2018) Chronic iron overload induces vascular dysfunction in resistance pulmonary arteries associated with right ventricular remodeling in rats. Toxicol Lett 295:296–306. https://doi.org/10.1016/j.toxlet.2018.07.010

    Article  CAS  PubMed  Google Scholar 

  41. Yunker LM, Parboosingh JS, Conradson HE, Faris P, Bridge PJ, Buithieu J, Title LM, Charbonneau F, Verma S, Lonn EM, Anderson TJ (2006) The effect of iron status on vascular health. Vasc Med 11(2):85–91. https://doi.org/10.1191/1358863x06vm656oa

    Article  PubMed  Google Scholar 

  42. Hahalis G, Kremastinos DT, Terzis G, Kalogeropoulos AP, Chrysanthopoulou A, Karakantza M et al (2008) Global vasomotor dysfunction and accelerated vascular aging in beta-thalassemia major. Atherosclerosis 198(2):448–457. https://doi.org/10.1016/j.atherosclerosis.2007.09.030

    Article  CAS  PubMed  Google Scholar 

  43. Carneiro-Junior MA, Quintao-Junior JF, Drummond LR, Lavorato VN, Drummond FR, da Cunha DN et al (2013) The benefits of endurance training in cardiomyocyte function in hypertensive rats are reversed within four weeks of detraining. J Mol Cell Cardiol 57:119–112. https://doi.org/10.1016/j.yjmcc.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  44. Bressy FR, Brito GB, Barbosa IS, Teixeira LSG, Korn MGA (2013) Determination of trace element concentrations in tomato samples at different stages of maturation by ICP OES and ICP-MES following microwave-assisted digestion. Microchem J 109:145–149. https://doi.org/10.1016/j.microc.2012.03.010

    Article  CAS  Google Scholar 

  45. Forjaz CLM, Santaella DF, Rezende LO, Barreto ACP, Negrão CE (1998) Exercise duration determines the magnitude and duration of post-exercise hypotension. Arq Bras Cardiol 70(2):99–104. https://doi.org/10.1590/S0066-782X1998000200006

    Article  CAS  PubMed  Google Scholar 

  46. Takata KI, Ohta T, Tanaka H (2003) How much exercise is required to reduce blood pressure in essential hypertensives: a dose-response study. Am J Hypertens 13:593–600

    Google Scholar 

  47. Sharman JE, La Gerche A, Coombes JS (2015) Exercise and cardiovascular risk in patients with hypertension. Am J Hypertens 28(2):147–158. https://doi.org/10.1093/ajh/hpu191

    Article  PubMed  Google Scholar 

  48. Kukongviriyapan V, Somparn N, Senggunprai L, Prawan A, Kukongviriyapan U, Jetsrisuparb A (2008) Endothelial dysfunction and oxidant status in pediatric patients with hemoglobin E-beta thalassemia. Pediatr Cardiol 29(1):130–135. https://doi.org/10.1007/s00246-007-9107-x

    Article  PubMed  Google Scholar 

  49. Cusmà Piccione M, Piraino B, Zito C, Khandheria BK, Di Bella G, De Gregorio C, Oreto L et al (2013) Early identification of cardiovascular involvement in patients with beta-thalassemia major. Am J Cardiol 112(8):1246–1251. https://doi.org/10.1016/j.amjcard.2013.05.080

    Article  PubMed  Google Scholar 

  50. Cardoso LM, Pedrosa ML, Silva ME, Moraes MF, Colombari E, Chianca DA (2005) Baroreflex function in conscious rats submitted to iron overload. Braz J Med Biol Res 38(2):205–214. https://doi.org/10.1590/S0100-879X2005000200008

    Article  CAS  PubMed  Google Scholar 

  51. Belotto MF, Magdalon J, Rodrigues HG, Vinolo MAR, Curi R, Pithon-Curi TC, Hatanaka E (2010) Moderate exercise improves leucocyte function and decreases inflammation in diabetes. Clin Exp Immunol 162(2):237–243. https://doi.org/10.1111/j.1365-2249.2010.04240.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Graham DA, Rush JW (2004) Exercise training improves aortic endothelium-dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats. J Appl Physiol 96(6):2088–2096. https://doi.org/10.1152/japplphysiol.01252.2003PMID:14752124

    Article  CAS  PubMed  Google Scholar 

  53. Fleming L (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 459(6):793–806. https://doi.org/10.1007/s00424-009-0767-7

    Article  CAS  PubMed  Google Scholar 

  54. Kuru O, Sentürk ÜK, Koçer G, Ozdem S, Başkurt OK, Cetin A, Yeşilkaya A, Gündüz F (2009) Effect of exercise training on resistance arteries in rats with chronic NOS inhibition. J Appl Physiol 107(3):896–902. https://doi.org/10.1152/japplphysiol.91180.2008

    Article  CAS  PubMed  Google Scholar 

  55. Mcallister RM, Price EM (2010) Effects of exercise training on vasodilatory protein expression and activity in rats. Eur J Appl Physiol 110(5):1019–1027. https://doi.org/10.1007/s00421-010-1584-6

    Article  CAS  PubMed  Google Scholar 

  56. Lee SK, Kim CS, Kim HS, Cho EJ, Joo HK, Lee JY, Lee EJ, Park JB, Jeon HB (2009) Endothelial nitric oxide synthase activation contributes to post-exercise hypotension in spontaneously hypertensive rats. Biochem Biophys Res Commun 382(15):711–714. https://doi.org/10.1016/j.bbrc.2009.03.090

    Article  CAS  PubMed  Google Scholar 

  57. Patil RD, DiCarlo SE, Collins HL (1993) Acute exercise enhances nitric oxide modulation of vascular response to phenylephrine. Am J Phys 265:1184–1188. https://doi.org/10.1152/ajpheart.1993.265.4.H1184

    Article  Google Scholar 

  58. Cheng LJ, Yang CC, Hsu LY, Lin MT, Jen JC, Chen HI (1999) Acute exercise enhances receptor-mediated endothelium-dependent vasodilation by receptor upregulation. J Biomed Sci 6(1):22–27. https://doi.org/10.1007/bf02256420

    Article  CAS  PubMed  Google Scholar 

  59. Gu Q, Wang B, Zhang XF, Ma YP, Liu JD, Wang XZ (2013) Contribution of hydrogen sulfide and nitric oxide to exercise-induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats. Mol Cell Biochem 375(1–2):199–206. https://doi.org/10.1007/s11010-012-1542-1

    Article  CAS  PubMed  Google Scholar 

  60. Claudio ER, Endlich PW, Santos RL, Moyses MR, Bissoli NS, Gouvea SA et al (2013) Effects of chronic swimming training and estrogen therapy on coronary vascular reactivity and expression of antioxidant enzymes in ovariectomized rats. PLoS One 8(6):e64806. https://doi.org/10.1371/journal.pone.0064806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Endlich PW, Claudio ERG, Gonçalves WLS, Gouvêa SA, Moyses MR, Abreu GR (2013) Swimming training prevents fat deposition and decreases angiotensin II-induced coronary vasoconstriction in ovariectomized rats. Peptides 47:29–35. https://doi.org/10.1016/j.peptides.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  62. Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, Sole MJ, Backx PH (2004) Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation 109(15):1877–1985. https://doi.org/10.1161/01.CIR.0000124229.40424.80

    Article  CAS  PubMed  Google Scholar 

  63. Badria FA, Ibrahim AS, Badria AF, Elmarakby AA (2015) Curcumin attenuates Iron accumulation and oxidative stress in the liver and spleen of chronic Iron-overloaded rats. PLoS One 10(7):2255–2262. https://doi.org/10.3892/mmr.2014.2544

    Article  CAS  Google Scholar 

  64. Zhang Z, Liu D, Yi B, Liao Z, Tang L, Yin D, He M (2014) Taurine supplementation reduces oxidative stress and protects the liver in an iron-overload murine model. Mol Med Rep 10(5):2255–2262. https://doi.org/10.3892/mmr.2014.2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Santos PC, Dinardo CL, Cancado RD, Schettert IT, Krieger JE, Pereira AC (2012) Non-HFE hemochromatosis. Rev Bras Hematol Hemoter 34(4):311–316. https://doi.org/10.5581/1516-8484.20120079

    Article  PubMed  PubMed Central  Google Scholar 

  66. Santos PC, Krieger JE, Pereira AC (2012) Molecular diagnostic and pathogenesis of hereditary hemochromatosis. Int J Mol Sci 13(2):1497–1511. https://doi.org/10.3390/ijms13021497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brewer C, Otto-Duessel M, Wood RI, Wood JC (2013) Sex differences and steroid modulation of cardiac iron in a mouse model of iron overload. Transl Res 163(2):151–159. https://doi.org/10.1016/j.trsl.2013.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lou LX, Geng B, Chen Y, Yu F, Zhao J, Tang CS (2009) Endoplasmic reticulum stress involved in heart and liver injury in iron-loaded rats. Clin Exp Pharmacol Physiol 36(7):612–618. https://doi.org/10.1111/j.1440-1681.2008.05114.x

    Article  CAS  PubMed  Google Scholar 

  69. Edwards CQ, Kelly TM, Ellwein G, Kushner JP (1983) Thyroid disease in hemochromatosis. Increased incidence in homozygous men. Arch Intern Med 143(10):1890–1893

    Article  CAS  Google Scholar 

  70. Mendler MH, Turlin B, Moirand R, Jouanolle AM, Sapey T, Guyader D (1999) Insulin resistance-associated hepatic iron overload. Gastroenterology 117(5):1155–1163. https://doi.org/10.1016/s0016-5085(99)70401-4

    Article  CAS  PubMed  Google Scholar 

  71. Lucesoli F, Fraga CG (1999) Oxidative stress in testes of rats subjected to chronic iron intoxication and alpha-tocopherol supplementation. Toxicology 132(2–3):179–186. https://doi.org/10.1016/S0300-483X(98)00152-8

    Article  CAS  PubMed  Google Scholar 

  72. Torrance JD, Charlton RW, Schmaman A, Lynch SR, Bothwell TH (1968) Storage iron in “muscle”. J Clin Pathol 21(4):495–500. https://doi.org/10.1136/jcp.21.4.495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Davidsen ES, Liseth K, Omvik P, Hervig T, Gerdts E (2007) Reduced exercise capacity in genetic haemochromatosis. Eur J Cardiovasc Prev Rehabil 14(3):470–475. https://doi.org/10.1097/HJR.0b013e3280ac151c

    Article  PubMed  Google Scholar 

  74. Reardon TF, Allen DG (2013) Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance. Exp Physiol 94(6):720–730. https://doi.org/10.1113/expphysiol.2008.046045

    Article  CAS  Google Scholar 

  75. Ikeda Y, Imao M, Satoh A, Watanabe H, Hamano H, Horinouchi Y, Izawa-Ishizawa Y, Kihira Y, Miyamoto L, Ishizawa K, Tsuchiya K, Tamaki T (2016) Iron-induced skeletal muscle atrophy involves an Akt-forkhead box O3-E3 ubiquitin ligase-dependent pathway. J Trace Elem Med Biol 35:66–76. https://doi.org/10.1016/j.jtemb.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  76. Brandhagen DJ, Fairbanks VF, Baldus W (2002) Recognition and management of hereditary hemochromatosis. Am Fam Physician 65(5):853–860

    PubMed  Google Scholar 

  77. Selby GB, Eichner ER (1986) Endurance swimming, intravascular hemolysis, anemia, and iron depletion. Am J Med 81(5):791–794. https://doi.org/10.1016/0002-9343(86)90347-5

    Article  CAS  PubMed  Google Scholar 

  78. Clement DB, Asmundson RC (1982) Nutritional intake and hematological parameters in endurance runners. Phys Sportsmed 10(3):37–43. https://doi.org/10.1080/00913847.1982.11947181

    Article  CAS  PubMed  Google Scholar 

  79. Schmidt W, Maassen N, Trost F, Böning D (1988) Training induced effects on blood volume, erythrocyte turnover and haemoglobin oxygen binding properties. Eur J Appl Physiol Occup Physiol 57(4):490–498. https://doi.org/10.1007/bf00417998

    Article  CAS  PubMed  Google Scholar 

  80. Schumacher Y, Schmid A, Konig D, Berg A (2002) Effects of exercise on soluble transferrin receptor and other variables of the iron status. Br J Sports Med 36(3):195–199. https://doi.org/10.1136/bjsm.36.3.195

    Article  PubMed  PubMed Central  Google Scholar 

  81. Liu YQ, Duan XL, Chang YZ, Wang HT, Qian ZM (2006) Molecular analysis of increased iron status in moderately exercised rats. Mol Cell Biochem 282(1–2):117–123. https://doi.org/10.1007/s11010-006-1522-4

    Article  CAS  PubMed  Google Scholar 

  82. Day SM, Duquaine D, Mundada LV, Menon RG, Khan BV, Rajagopalan S et al (2003) Chronic iron administration increases vascular oxidative stress and accelerates arterial thrombosis. Circulation 107(20):2601–2606. https://doi.org/10.1161/01.CIR.0000066910.02844.D0

    Article  CAS  PubMed  Google Scholar 

  83. Marques VB, Leal MAS, Mageski JGA, Fidelis HG, Nogueira BV, Vasquez EC, Meyrelles SDS, Simões MR, Dos Santos L (2019) Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: role of oxidative stress and endothelial dysfunction. Life Sci 233:116702. https://doi.org/10.1016/j.lfs.2019.116702

    Article  CAS  PubMed  Google Scholar 

  84. Fidelis HG, Mageski JGA, Goes SCE, Botelho T, Marques VB, Ávila RA, dos Santos L (2020) Angiotensin II receptor type 1 blockade prevents arterial remodeling and stiffening in iron overloaded rats. Br J Pharmacol:1–12. https://doi.org/10.1111/bph.14904

  85. Brown MD (2003) Exercise and coronary vascular remodelling in the healthy heart. Exp Physiol 88(5):645–658. https://doi.org/10.1113/eph8802618

    Article  PubMed  Google Scholar 

  86. Ye F, Wu Y, Chen Y, Xiao D, Shi L (2019) Impact of moderate and high-intensity exercise on the endothelial ultrastructure and function in mesenteric arteries from hypertensive rats. Life Sci 1222:36–45. https://doi.org/10.1016/j.lfs.2019.01.058

    Article  CAS  Google Scholar 

  87. Couto GK, Paula SM, Gomes-Santos IL, Negrão CE, Rossoni LV (2018) Exercise training induces eNOS coupling and restores relaxation in coronary arteries of heart failure rats. Am J Physiol Heart Circ Physiol 314(4):H878–H887. https://doi.org/10.1152/ajpheart.00624.2017

    Article  CAS  PubMed  Google Scholar 

  88. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S (2000) Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 342(7):454–460. https://doi.org/10.1056/NEJM200002173420702

    Article  CAS  PubMed  Google Scholar 

  89. Thompson MA, Henderson KK, Woodman CR, Turk JR, Rush JW, Price E, Laughlin MH (2003) Exercise preserves endothelium-dependent relaxation in coronary arteries of hypercholesterolemic male pigs. J Appl Physiol 96(3):1114–1126. https://doi.org/10.1152/japplphysiol.00768.2003

    Article  PubMed  Google Scholar 

  90. Delp MD, McAllister RM, Laughlin MH (1993) Exercise training alters endothelium dependent vasoreactivity of rat abdominal aorta. J Appl Physiol 75(3):1354–1363. https://doi.org/10.1152/jappl.1993.75.3.1354

    Article  CAS  PubMed  Google Scholar 

  91. Lash JM, Bohlen HG (1985) Time- and order-dependent changes in functional and NO-mediated dilation during exercise training. J Appl Physiol 82(2):460–468. https://doi.org/10.1152/jappl.1997.82.2.460

    Article  Google Scholar 

  92. Haskell WL, Sims C, Myll J, Bortz WM, St Goar FG, Alderman EL (1993) Coronary artery size and dilating capacity in ultradistance runners. Circulation 87(4):1076–1082. https://doi.org/10.1161/01.cir.87.4.1076

    Article  CAS  PubMed  Google Scholar 

  93. Chen SJ, Wu CC, Yen MH (2001) Exercise training activates large-conductance calcium-activated K(+) channels and enhances nitric oxide production in rat mesenteric artery and thoracic aorta. J Biomed Sci 8(3):248–255. https://doi.org/10.1007/bf02256598

    Article  CAS  PubMed  Google Scholar 

  94. Cooper CE, Vollaard NB, Choueiri T, Wilson MT (2002) Exercise, free radicals and oxidative stress. Biochem Soc Trans 30(2):280–285

    Article  CAS  Google Scholar 

  95. Fernandes T, Gomes-Gatto CV, Pereira NP, Alayafi YR, das Neves VJ, Oliveira EM (2017) NO signaling in the cardiovascular system and exercise. Adv Exp Med Biol 1000:211–245. https://doi.org/10.1007/978-981-10-4304-8_13

    Article  CAS  PubMed  Google Scholar 

  96. Hershko C (2010) Pathogenesis and management of iron toxicity in thalassemia. Ann N Y Acad Sci 1202:1–9. https://doi.org/10.1111/j.1749-6632.2010.05544.x

    Article  CAS  PubMed  Google Scholar 

  97. Zhou XJ, Laszik Z, Wang XQ, Silva FG, Vaziri ND (2000) Association of renal injury with increased oxygen free radical activity and altered nitric oxide metabolism in chronic experimental hemosiderosis. Lab Investig 80(12):1905–1914. https://doi.org/10.1038/labinvest.3780200

    Article  CAS  PubMed  Google Scholar 

  98. Higashi Y, Noma K, Yoshizumi M, Kihara Y (2009) Endothelial function and oxidative stress in cardiovascular diseases. Circ J 73(3):411–418. https://doi.org/10.1253/circj.cj-08-1102

    Article  CAS  PubMed  Google Scholar 

  99. Wardman P, Candeias LP (1996) Fenton chemistry: an introduction. Radiat Res 145(5):523531. https://doi.org/10.2307/3579270

    Article  Google Scholar 

  100. Cai H (2005) Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res 68(1):26–36. https://doi.org/10.1016/j.cardiores.2005.06.021

    Article  CAS  PubMed  Google Scholar 

  101. Thakali K, Davenport L, Fink GD, Watts SW, Thakali K, Davenport L, Fink GD, Watts SW (2006) Pleiotropic effects of hydrogen peroxide in arteries and veins from normotensive and hypertensive rats. Hypertension 47(3):482–487. https://doi.org/10.1161/01.HYP.0000201540.91234.8f

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the technical support of the Multi-user Laboratory of Histotechniques (LHT) and Laboratory of Histology and Immunistochemistry (LHMI) for the use of the microscope for histological analysis and the Laboratory of Experimental Physiology and Biochemistry (LAFIBE) for the technical support in the use of the treadmill for rodents. Special acknowledgment is given to Mr. Charles G. Rees for assistance with language correction and style.

Funding

This work was supported by grants from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Finance code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant numbers 433632/2018-6 MCTIC/CNPq 28-2018 and 303077/2017-4 CNPq 12-2017), and Fundação de Amparo à Pesquisa do Espírito Santo (grant number 80707483 Edital Universal FAPES 03/2017, and grant number 388/2018 Edital PROFIX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo dos Santos.

Ethics declarations

All experiments were conducted in accordance with the Brazilian Guidelines for the Care and Use of Animals for Scientific and Educational Purposes, and the protocols were approved by the Institutional Ethics Committee on Animal Use (CEUA-UFES registration number 88/2015).

Disclaimer

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, E.M., Ávila, R.A., Carneiro, M.T.W.D. et al. Chronic Iron Overload Restrains the Benefits of Aerobic Exercise to the Vasculature. Biol Trace Elem Res 198, 521–534 (2020). https://doi.org/10.1007/s12011-020-02078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02078-y

Keywords

Navigation