Skip to main content

Advertisement

Log in

Nobiletin Regulates ROS/ADMA/DDAHII/eNOS/NO Pathway and Alleviates Vascular Endothelium Injury by Iron Overload

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iron overload is harmful to health and associates with intracellular excessive reactive oxygen species (ROS) generation. Nobiletin (Nob) is known to be antioxidant and anti-inflammatory. However, whether Nob can protect endothelial cells against iron overload has not been studied, and the specific mechanism has not yet been elucidated. In this study, we have identified the protective effects of Nob, and its underlying molecular mechanism in human umbilical vein endothelial cells (HUVECs) suffered from iron overload via ROS/ADMA/DDAHII/eNOS/NO pathway. We found that compared with 50 μM iron dextran treatment, co-treatment with 20 μM Nob increased cell viability and decreased lactate dehydrogenase activity. Besides, Nob could upregulate DDAHII expression and activity, promote eNOS phosphorylation to produce more NO, reduce ADMA content, and therefore increase superoxide dismutase, catalase, and glutathione peroxidase activities, and decrease malondialdehyde level and ROS generation. Nob also inhibited mitochondrial permeability transition pore (mPTP) openness and cleaved caspase-3 expression, and decreased apoptosis induced by iron overload. These results were consistent when Nob was replaced by the positive control reagents L-arginine (a competitive substrate of ADMA), cyclosporin A (an mPTP closing agent), or edaravone (a free radical scavenger). The addition of pAD/DDAHII-shRNA adenovirus reversed the above effects of Nob. These data suggested that the protective mechanism of Nob was to inhibit ROS burst, upregulate DDAHII expression and activity, promote eNOS phosphorylation, produce NO, reduce ADMA content, and ultimately alleviate iron overload damage in vascular endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brissot P, Ropert M, Le Lan C, Loréal O (2012) Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim Biophys Acta 1820:403–410

    CAS  PubMed  Google Scholar 

  2. Kraml P (2017) The role of iron in the pathogenesis of atherosclerosis. Physiol Res 66:S55–S67

    CAS  PubMed  Google Scholar 

  3. Vinchi F, Muckenthaler MU, Da Silva MC, Balla G, Balla J, Jeney V (2014) Atherogenesis and iron: from epidemiology to cellular level. Front Pharmacol 5:94

    PubMed  PubMed Central  Google Scholar 

  4. Gudjoncik A, Guenancia C, Zeller M, Cottin Y, Vergely C, Rochette L (2014) Iron, oxidative stress, and redox signaling in the cardiovascular system. Mol Nutr Food Res 58:1721–1738

    CAS  PubMed  Google Scholar 

  5. Finazzi D, Arosio P (2014) Biology of ferritin in mammals: an update on iron storage, oxidative damage and neurodegeneration. Arch Toxicol 88:1787–1802

    CAS  PubMed  Google Scholar 

  6. Gammella E, Recalcati S, Rybinska I, Buratti P, Cairo G (2015) Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxidative Med Cell Longev 2015:230182

    Google Scholar 

  7. Qiao Y, He H, Zhang Z, Liao Z, Yin D, Liu D, Yi B, He M (2016) Long-term sodium Ferulate supplementation scavenges oxygen radicals and reverses liver damage induced by Iron overloading. Molecules 21:1219

    PubMed Central  Google Scholar 

  8. He H, Qiao Y, Zhang Z, Wu Z, Liu D, Liao Z, Yin D, He M (2018) Dual action of vitamin C in iron supplement therapeutics for iron deficiency anemia: prevention of liver damage induced by iron overload. Food Funct 9:5390–5401

    CAS  PubMed  Google Scholar 

  9. Liu D, He H, Yin D, Que A, Tang L, Liao Z, Huang Q, He M (2013) Mechanism of chronic dietary iron overload-induced liver damage in mice. Mol Med Rep 7:1173–1179

    CAS  PubMed  Google Scholar 

  10. Zhang ZY, Liu D, Yi B, Liao ZP, Tang L, Yin D, He M (2014) Taurine supplementation reduces oxidative stress and protects the liver in an iron-overload murine model. Mol Med Rep 10:2255–2262

    CAS  PubMed  PubMed Central  Google Scholar 

  11. He H, Qiao Y, Zhou Q, Wang Z, Chen X, Liu D, Yin D, He M (2019) Iron overload damages the endothelial mitochondria via ROS/ADMA/DDAHII/eNOS/NO pathway. Oxidative Med Cell Longev 2019:2340392

    Google Scholar 

  12. Kobayashi M, Suhara T, Baba Y, Kawasaki NK, Higa JK, Matsui T (2018) Pathological roles of Iron in cardiovascular disease. Curr Drug Targets 19:1068–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Godo S, Shimokawa H (2017) Divergent roles of endothelial nitric oxide synthases system in maintaining cardiovascular homeostasis. Free Radic Biol Med 109:4–10

    CAS  PubMed  Google Scholar 

  14. Siekmeier R, Grammer T, März W (2008) Roles of oxidants, nitric oxide, and asymmetric dimethylarginine in endothelial function. J Cardiovasc Pharmacol Ther 13:279–297

    CAS  PubMed  Google Scholar 

  15. Mangoni AA (2009) The emerging role of symmetric dimethylarginine in vascular disease. Adv Clin Chem 48:73–94

    CAS  PubMed  Google Scholar 

  16. Bouras G, Deftereos S, Tousoulis D, Giannopoulos G, Chatzis G, Tsounis D, Cleman MW, Stefanadis C (2013) Asymmetric Dimethylarginine (ADMA): a promising biomarker for cardiovascular disease? Curr Top Med Chem 13:180–200

    CAS  PubMed  Google Scholar 

  17. Böger RH (2003) The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Cardiovasc Res 59:824–833

    PubMed  Google Scholar 

  18. Feng J, Luo H, Qiu Y, Zhou W, Yu F, Wu F (2011) Down-regulation of DDAH2 and eNOS induces endothelial dysfunction in sinoaortic-denervated rats. Eur J Pharmacol 661:86–91

    CAS  PubMed  Google Scholar 

  19. Zhang N, Wei WY, Yang Z, Che Y, Jin YG, Liao HH, Wang SS, Deng W, Tang QZ (2017) Nobiletin, a polymethoxy flavonoid, protects against cardiac hypertrophy induced by pressure-overload via inhibition of NAPDH oxidases and endoplasmic reticulum stress. Cell Physiol Biochem 42:1313–1325

    CAS  PubMed  Google Scholar 

  20. Zhang N, Yang Z, Xiang SZ, Jin YG, Wei WY, Bian ZY, Deng W, Tang QZ (2016) Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy. Mol Cell Biochem 417:87–96

    CAS  PubMed  Google Scholar 

  21. Qi G, Mi Y, Fan R, Li R, Liu Z, Liu X (2019) Nobiletin protects against systemic inflammation-stimulated memory impairment via MAPK and NF-κB signaling pathways. J Agric Food Chem 67:5122–5134

    CAS  PubMed  Google Scholar 

  22. Vaiyapuri S, Roweth H, Ali MS, Unsworth AJ, Stainer AR, Flora GD, Crescente M, Jones CI, Moraes LA, Gibbins JM (2015) Pharmacological actions of nobiletin in the modulation of platelet function. Br J Pharmacol 172:4133–4145

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Whitman SC, Kurowska EM, Manthey JA, Daugherty A (2005) Nobiletin, a citrus flavonoid isolated from tangerines, selectively inhibits class A scavenger receptor-mediated metabolism of acetylated LDL by mouse macrophages. Atherosclerosis. 178:25–32

    CAS  PubMed  Google Scholar 

  24. Tang MX, Ogawa K, Asamoto M, Chewonarin T, Suzuki S, Tanaka T, Shirai T (2011) Effects of nobiletin on PhIP-induced prostate and colon carcinogenesis in F344 rats. Nutr Cancer 63:227–233

    CAS  PubMed  Google Scholar 

  25. Narang N, Jiraungkoorskul W (2016) Anticancer activity of key lime, Citrus aurantifolia. Pharmacogn Rev 10:118–122

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bracke M, Vyncke B, Opdenakker G, Foidart JM, De Pestel G, Mareel M (1991) Effect of catechins and citrus flavonoids on invasion in vitro. Clin Exp Metastasis 9:13–25

    CAS  PubMed  Google Scholar 

  27. Lu YH, Su MY, Huang HY, Lin L, Yuan CG (2010) Protective effects of the citrus flavanones to PC12 cells against cytotoxicity induced by hydrogen peroxide. Neurosci Lett 484:6–11

    CAS  PubMed  Google Scholar 

  28. Su JD, Yen JH, Li S, Weng CY, Lin MH, Ho CT, Wu MJ (2012) 3′,4′- didemethylnobiletin induces phase II detoxification gene expression and modulates PI3K/Akt signaling in PC12 cells. Free Radic Biol Med 52:126–141

    CAS  PubMed  Google Scholar 

  29. Wu X, Zheng D, Qin Y, Liu Z, Zhang G, Zhu X, Zeng L, Liang Z (2017) Nobiletin attenuates adverse cardiac remodeling after acute myocardial infarction in rats via restoring autophagy flux. Biochem Biophys Res Commun 492:262–268

    CAS  PubMed  Google Scholar 

  30. Sawa Y, Ueki T, Hata M, Iwasawa K, Tsuruga E, Kojima H, Ishikawa H, Yoshida S (2008) LPS-induced IL-6, IL-8, VCAM-1, and ICAM-1 expression in human lymphatic endothelium. J Histochem Cytochem 56:97–109

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lam KH, Alex D, Lam IK, Tsui SK, Yang ZF, Lee SM (2011) Nobiletin, a polymethoxylated flavonoid from citrus, shows anti-angiogenic activity in a zebrafish in vivo model and HUVEC in vitro model. J Cell Biochem 112:3313–3321

    CAS  PubMed  Google Scholar 

  32. Yang W, Li S, Liao L, Zheng X, Li J, Zheng Y, Zhang X, Zhu D (2016) Nobiletin relaxes isolated mesenteric arteries by activating the endothelial Ca2+-eNOS pathway in rats. J Vasc Res 53:330–339

    CAS  PubMed  Google Scholar 

  33. Molinari C, Morsanuto V, Polli S, Uberti F (2018) Cooperative effects of Q10, vitamin D3, and L-arginine on cardiac and endothelial cells. J Vasc Res 55:47–60

    CAS  PubMed  Google Scholar 

  34. Teixeira G, Abrial M, Portier K, Chiari P, Couture-Lepetit E, Tourneur Y, Ovize M, Gharib A (2013) Synergistic protective effect of cyclosporin A and rotenone against hypoxia-reoxygenation in cardiomyocytes. J Mol Cell Cardiol 56:55–62

    CAS  PubMed  Google Scholar 

  35. Masuda T, Shimazawa M, Takata S, Nakamura S, Tsuruma K, Hara H (2016) Edaravone is a free radical scavenger that protects against laser-induced choroidal neovascularization in mice and common marmosets. Exp Eye Res 146:196–205

    CAS  PubMed  Google Scholar 

  36. Wu Y, Zhang JJ, Li TB, Liu WQ, Li LS, Luo XJ, Jiang JL, Ma QL, Yang ZC, Peng J (2016) Phosphorylation of nonmuscle myosin light chain promotes endothelial injury in hyperlipidemic rats through a mechanism involving downregulation of dimethylarginine dimethylaminohydrolase 2. J Cardiovasc Pharmacol Ther 21:536–548

    CAS  PubMed  Google Scholar 

  37. Zhang ZY, He H, Qiao Y, Huang JY, Wu ZL, Xu P, Yin D, He M (2018) TanshinoneIIA pretreatment protects H9c2 cells against anoxia/reoxygenation injury: involvement of the translocation of Bcl-2 to mitochondria mediated by 14-3-3η. Oxidative Med Cell Longev 2018:3583921

    Google Scholar 

  38. Thummasorn S, Kumfu S, Chattipakorn S, Chattipakorn N (2011) Granulocyte- colony stimulating factor attenuates mitochondrial dysfunction induced by oxidative stress in cardiac mitochondria. Mitochondrion 11:457–466

    CAS  PubMed  Google Scholar 

  39. He H, Zhou Y, Huang JY, Wu ZL, Liao ZP, Liu D, Yin D, He M (2017) Capsaicin protects cardiomyocytes against anoxia/reoxygenation injury via preventing mitochondrial dysfunction mediated by SIRT1. Oxidative Med Cell Longev 2017:1035702

    Google Scholar 

  40. Ramanathan G, Olynyk JK, Ferrari P (2017) Diagnosing and preventing iron overload. Hemodial Int 21(Suppl 1):S58–S67

    PubMed  Google Scholar 

  41. Guo S, Frazer DM, Anderson GJ (2016) Iron homeostasis: transport, metabolism, and regulation. Curr Opin Clin Nutr Metab Care 19:276–281

    CAS  PubMed  Google Scholar 

  42. Asikin Y, Taira I, Inafuku-Teramoto S, Sumi H, Ohta H, Takara K, Wada K (2012) The composition of volatile aroma components, flavanones, and polymethoxylated flavones in Shiikuwasha (Citrus depressa Hayata) peels of different cultivation lines. J Agric Food Chem 60:7973–7980

    CAS  PubMed  Google Scholar 

  43. Zhang BF, Jiang H, Chen J, Guo X, Li Y, Hu Q, Yang S (2019) Nobiletin ameliorates myocardial ischemia and reperfusion injury by attenuating endoplasmic reticulum stress-associated apoptosis through regulation of the PI3K/AKT signal pathway. Int Immunopharmacol 73:98–107

    CAS  PubMed  Google Scholar 

  44. Qu Y, Liu Y, Chen L, Zhu Y, Xiao X, Wang D, Zhu Y (2018) Nobiletin prevents cadmium-induced neuronal apoptosis by inhibiting reactive oxygen species and modulating JNK/ERK1/2 and Akt/mTOR networks in rats. Neurol Res 40:211–220

    CAS  PubMed  Google Scholar 

  45. Dusabimana T, Kim SR, Kim HJ, Park SW, Kim H (2019) Nobiletin ameliorates hepatic ischemia and reperfusion injury through the activation of SIRT-1/FOXO3a -mediated autophagy and mitochondrial biogenesis. Exp Mol Med 51:51

    PubMed Central  Google Scholar 

  46. Potue P, Wunpathe C, Maneesai P, Kukongviriyapan U, Prachaney P, Pakdeechote P (2019) Nobiletin alleviates vascular alterations through modulation of Nrf-2/HO-1 and MMP pathways in l-NAME induced hypertensive rats. Food Funct 10:1880–1892

    CAS  PubMed  Google Scholar 

  47. Li ZR, Yang L, Zhen J, Zhao Y, Lu ZN (2018) Nobiletin protects PC12 cells from ERS-induced apoptosis in OGD/R injury via activation of the PI3K/AKT pathway. Exp Ther Med 6:1470–1476

    Google Scholar 

  48. Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517

    CAS  PubMed  Google Scholar 

  49. Brady NR, Hamacher-Brady A, Westerhoff HV, Gottlieb RA (2006) A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria. Antioxid Redox Signal 8:1651–1665

    CAS  PubMed  Google Scholar 

  50. Yun S, He X, Zhang W, Chu D, Feng C (2019) Alleviation effect of grape seed proanthocyanidins on neuronal apoptosis in rats with iron overload. Biol Trace Elem Res:1–11. https://doi.org/10.1007/s12011-019-01766-8

  51. Lazourgui MA, El-Aoufi S, Labsi M, Maouche B (2016) Coenzyme Q10 supplementation prevents iron overload while improving glycaemic control and antioxidant protection in insulin-resistant Psammomys obesus. Biol Trace Elem Res 173:108–115

    CAS  PubMed  Google Scholar 

  52. Chtourou Y, Fetoui H, Gdoura R (2014) Protective effects of naringenin on iron-overload-induced cerebral cortex neurotoxicity correlated with oxidative stress. Biol Trace Elem Res 158:376–383

    CAS  PubMed  Google Scholar 

  53. Eybl V, Kotyzova D, Cerna P, Koutensky J (2008) Effect of melatonin, curcumin, quercetin, and resveratrol on acute ferric nitrilotriacetate (Fe-NTA)-induced renal oxidative damage in rats. Hum Exp Toxicol 27:347–353

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Natural Science Foundation of China (Nos. 21467017, 81673431, 81660538, 81803534) and Jiangxi applied research and cultivation program (20181BBG78059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan He.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 119 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, B., Chen, X. et al. Nobiletin Regulates ROS/ADMA/DDAHII/eNOS/NO Pathway and Alleviates Vascular Endothelium Injury by Iron Overload. Biol Trace Elem Res 198, 87–97 (2020). https://doi.org/10.1007/s12011-020-02038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02038-6

Keywords

Navigation