Skip to main content
Log in

The Role of Zinc in Poultry Breeder and Hen Nutrition: an Update

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc (Zn) is an essential trace mineral in breeder hen diets and functions in diverse physiological processes, including reproduction, immunity, antioxidant ability, and epigenetic processes. In this paper, five main aspects of Zn nutrition in poultry breeder birds and hens, including semen quality, molting, egg production and egg quality, hatchability and embryonic development, and offspring performance, are reviewed. Zn deficiency in poultry breeder birds led to lower semen quality (reducing around 10% sperm motility) and egg production (lowering 3–10 g/day/bird egg mass) as well as poor offspring development and growth performance (increasing 9–10% weak chick ratio and 10% mortality of progeny). Adequate maternal or higher Zn supplementation was adopted not only to induce molting with a greater postmolt performance (rising 4–7% laying rate) but also to enhance progeny immune response and antioxidant ability via epigenetic mechanisms. Therefore, it is necessary to reevaluate the optimal Zn requirement for egg production as well as the embryonic development and offspring chick performance of breeder hens. In the last 10 years, greater attention has been focused on the effectiveness of organic Zn for improving the reproductive performance of breeders and progeny viability and immune status. In fact, organic Zn sources are not always beneficial to the above aspects. So far, it has been very important to know the exact mechanisms of greater bioavailability and the epigenetic role of organic Zn sources in the augmentation of immune status and antioxidant abilities in poultry breeder birds and offspring. Therefore, a comprehensive analysis of these key points will not only aid in maintaining the beneficial effects of Zn nutrition for breeders and their progeny under stable conditions but will also support birds under stressful conditions such as disease as well as provide a better understanding of the integrated nutrition of breeder-offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALP:

alkaline phosphatase

AST:

aspartate amino transferase

ALT:

alanine transaminase

ATP:

adenosine triphosphate

Ca:

calcium

CA:

carbonic anhydrase

MT:

metallothioneins

CuZnSOD:

copper zinc superoxide dismutase

Zn:

zinc

References

  1. NRC (ed) (1994) Nutrient Requirements of Poultry, 9th revised edn. National Academy Press, Washington, DC

  2. Ao T, Pierce J (2013) The replacement of inorganic mineral salts with mineral proteinates in poultry diets. World’s Poult Sci J 69:5–16

    Google Scholar 

  3. Tabatabaie MM, Aliarabi H, Saki AA, Ahmadi A, Siyar SA (2007) Effect of different sources and levels of zinc on egg quality and laying hen performance. Pak J Biol Sci 10(19):3476–3478

    CAS  PubMed  Google Scholar 

  4. Nys Y, Gautron J, Garcia-Ruiz JM, Hincke MT (2004) Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. C R Palevol 3(6–7):549–562

    Google Scholar 

  5. Rodriguez-Navarro AB, Marie P, Nys Y, Hincke MT, Gautron J (2015) Amorphous calcium carbonate controls avian eggshell mineralization: a new paradigm for understanding rapid eggshell calcification. J Struct Biol 190(3):291–303

    CAS  PubMed  Google Scholar 

  6. Innocenti A, Zimmerman S, Ferry JG, Scozzafava A, Supuran CT (2004) Carbonic anhydrase inhibitors. Inhibition of the zinc and cobalt gamma-class enzyme from the archaeon Methanosarcina thermophila with anions. Bioorg Med Chem Lett 14(12):3327–3331

    CAS  PubMed  Google Scholar 

  7. Richards MP (1997) Trace mineral metabolism in the avian embryo. Poult Sci 76(1):152–164

    CAS  PubMed  Google Scholar 

  8. Blamberg DL, Blackwood UB, Supplee WC, Combs GF (1960) Effect of zinc deficiency in hens on hatchability and embryonic development. Proc Soc Exp Biol Med 104:217–220

    CAS  PubMed  Google Scholar 

  9. Kienholz EW, Turk DE, Sunde ML, Hoekstra WG (1961) Effects of zinc deficiency in the diets of hens. J Nutr 75(2):211–221

    CAS  PubMed  Google Scholar 

  10. Zhu YW, Li WX, Lu L, Zhang LY, Ji C, Lin X, Liu HC, Odle J, Luo XG (2017) Impact of maternal heat stress in conjunction with dietary zinc supplementation on hatchability, embryonic development, and growth performance in offspring broilers. Poult Sci 96(7):2351–2359

    CAS  PubMed  Google Scholar 

  11. Sun X, Lu L, Liao X, Zhang L, Lin X, Luo X, Ma Q (2018) Effect of in Ovo zinc injection on the embryonic development and epigenetics-related indices of zinc-deprived broiler breeder eggs. Biol Trace Elem Res 185(2):456–464

    CAS  PubMed  Google Scholar 

  12. Kurita H, Ohsako S, Hashimoto S, Yoshinaga J, Tohyama C (2013) Prenatal zinc deficiency-dependent epigenetic alterations of mouse metallothionein-2 gene. J Nutr Biochem 24(1):256–266

    CAS  PubMed  Google Scholar 

  13. Supplee WC, Blamberg DL, Keene OD, GFC GLR (1958) Observations on zinc supplementation of poultry rations. Poult Sci 37:1245–1246

    Google Scholar 

  14. Turk DE, Sunde ML, Hoekstra WG (1959) Zinc deficiency experiments with poultry. Poult Sci 38:1256

    Google Scholar 

  15. Dardenne M (2002) Zinc and immune function. Eur J Clin Nutr 56(Suppl 3):S20–S23

    CAS  PubMed  Google Scholar 

  16. Park SY, Kim WK, Birkhold SG, Kubena LF, Nisbet DJ, Ricke SC (2004) Using a feed-grade zinc propionate to achieve molt induction in laying hens and retain postmolt egg production and quality. Biol Trace Elem Res 101(2):165–179

    CAS  PubMed  Google Scholar 

  17. Sandhu MA, Rahman ZU, Rahman SU (2006) Dynamics of macrophages in laying hens during second and third production cycles after zinc induced molting. J Poult Sci 43:286–295

    CAS  Google Scholar 

  18. Kidd MT, Anthony NB, Lee SR (1992) Progeny performance when dams and chicks are fed supplemental zinc. Poult Sci 71(7):1201–1206

    CAS  PubMed  Google Scholar 

  19. Kidd MT, Anthony NB, Newberry LA, Lee SR (1993) Effect of supplemental zinc in either a corn-soybean or a milo and corn-soybean meal diet on the performance of young broiler breeders and their progeny. Poult Sci 72(8):1492–1499

    CAS  Google Scholar 

  20. Virden WS, Yeatman JB, Barber SJ, Zumwalt CD, Ward TL, Johnson AB, Kidd MT (2003) Hen mineral nutrition impacts progeny livability. J Appl Poult Res 12(4):411–416

    CAS  Google Scholar 

  21. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130(5):1447s–1454s

    CAS  PubMed  Google Scholar 

  22. Gallo R, Veronico M, Nacucchi O, Tafaro E, Barile P, Nicastro F, Zezza L (2003) The effects of selenium, zinc and vitamin E supplementation on performance of broiler breeder males. Ital J Anim Sci 2:471–473

    Google Scholar 

  23. Zhang L, Wang JS, Wang Q, Li KX, Guo TY, Xiao X, Wang YX, Zhan XA (2018) Effects of maternal zinc glycine on mortality, zinc concentration, and antioxidant status in a developing embryo and 1-day-old chick. Biol Trace Elem Res 181(2):323–330

    CAS  PubMed  Google Scholar 

  24. Zhu Y, Liao X, Lu L, Li W, Zhang L, Ji C, Lin X, Liu HC, Odle J, Luo X (2017) Maternal dietary zinc supplementation enhances the epigenetic-activated antioxidant ability of chick embryos from maternal normal and high temperatures. Oncotarget 8(12):19814–19824

    PubMed  PubMed Central  Google Scholar 

  25. Abd El-Hack ME, Alagawany M, Arif M, Chaudhry MT, Emam M, Patra A (2017) Organic or inorganic zinc in poultry nutrition: a review. World’s Poult Sci J 73(4):904–915

    Google Scholar 

  26. Huang YL, Lu L, Li SF, Luo XG, Liu B (2009) Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional corn-soybean meal diet. J Anim Sci 87(6):2038–2046

    CAS  PubMed  Google Scholar 

  27. Huang YL, Lu L, Xie JJ, Li SF, Li XL, Liu SB, Zhang LY, Xi L, Luo XG (2013) Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed diets with low or high phytate content. Anim Feed Sci Technol 1.79(1–4):144–148

    Google Scholar 

  28. Idowu OMO, Ajuwon RO, Oso AO, Akinloye OA (2011) Effects of zinc supplementation on laying performance, serum chemistry and Zn residue in tibia bone, liver, excreta and egg shell of laying hens. Int J Poult Sci 10:225–230

    CAS  Google Scholar 

  29. Zhang YN, Wang J, Zhang HJ, Wu SG, Qi GH (2017) Effect of dietary supplementation of organic or inorganic manganese on eggshell quality, ultrastructure, and components in laying hens. Poult Sci 96(7):2184–2193

    CAS  PubMed  Google Scholar 

  30. Hidiroglou M, Knipfel JE (1984) Zinc in mammalian sperm: a review. J Dairy Sci 67(6):1147–1156

    CAS  PubMed  Google Scholar 

  31. Hurley WL, Doane RM (1989) Recent developments in the roles of vitamins and minerals in reproduction. J Dairy Sci 72:784–804

    CAS  PubMed  Google Scholar 

  32. Blesbois E, Mauger I (1989) Zinc content of fowl seminal plasma and its effects on spermatozoa after storage at 4 degrees C. Br Poult Sci 30(3):677–685

    CAS  PubMed  Google Scholar 

  33. Arver S, Eliasson R (1980) Zinc and magnesium in bull and boar spermatozoa. J Reprod Fertil 60(2):481–484

    CAS  PubMed  Google Scholar 

  34. Mann T, Lutwak-Mann C (2012) Male reproductive function and semen: themes and trends in physiology, biochemistry and investigative andrology. Springer Science & Business Media, Berlin

    Google Scholar 

  35. Colagar AH, Marzony ET, Chaichi MJ (2009) Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr Res 29(2):82–88

    CAS  PubMed  Google Scholar 

  36. Pakevic N, Djordjevic D, Dragicevic S, Durutovic O, Lalic N, Micic S (2010) Relationship between zinc concentrations in seminal plasma and various sperm parameters. Eur Urol Suppl 9(6):586–586

    Google Scholar 

  37. Amem MH, Al-Daraji HJ (2011) Effect of dietary zinc on semen quality of cobb 500 broiler breeder males. Int J Poult Sci 10:477–482

    CAS  Google Scholar 

  38. Amen MH, Al-Daraji HJ (2011) Effect of dietary zinc supplementation on some seminal plasma characteristics of broiler breeders’ males. Int J Poult Sci 10:814–818

    CAS  Google Scholar 

  39. Hidiroglou M (1979) Trace element deficiencies and fertility in ruminants: a review. J Dairy Sci 62(8):1195–1206

    CAS  PubMed  Google Scholar 

  40. Surai P, Kostjuk I, Wishart G, Macpherson A, Speake B, Noble R, Ionov I, Kutz E (1998) Effect of vitamin E and selenium supplementation of cockerel diets on glutathione peroxidase activity and lipid peroxidation susceptibility in sperm, testes, and liver. Biol Trace Elem Res 64(1–3):119–132

    CAS  PubMed  Google Scholar 

  41. Surai PF, Brillard JP, Speake BK, Blesbois E, Seigneurin F, Sparks NHC (2000) Phospholipid fatty acid composition, vitamin E content and susceptibility to lipid peroxidation of duck spermatozoa. Theriogenology 53:1025–1039

    CAS  PubMed  Google Scholar 

  42. Barber SJ, Parker HM, McDaniel CD (2005) Broiler breeder semen quality as affected by trace minerals in vitro. Poult Sci 84(1):100–105

    CAS  PubMed  Google Scholar 

  43. Bakst MR (1985) Zinc reduces Turkey sperm oxygen uptake in vitro. Poult Sci 64(3):564–566

    CAS  PubMed  Google Scholar 

  44. Bakst MR, Richards MP (1985) Concentrations of selected cations in Turkey serum and oviductal mucosae. Poult Sci 64(3):555–563

    CAS  PubMed  Google Scholar 

  45. Earnshaw MJ, Wilson S, Akberali HB, Butler RD, Marriott KRM (1986) The action of heavy metals on the gametes of the marine mussel, Mytilus edulis (L.)—III. The effect of applied copper and zinc on sperm motilityin relation to ultrastructural damage and intracellular metal localisation. Mar Environ Res 20:261–278

    CAS  Google Scholar 

  46. Riffo M, Leiva S, Astudillo J (1992) Effect of zinc on human sperm motility and the acrosome reaction. Int J Androl 15(3):229–237

    CAS  PubMed  Google Scholar 

  47. Berry WD (2003) The physiology of induced molting. Poult Sci 82(6):971–980

    CAS  PubMed  Google Scholar 

  48. Andrews DK, Berry WD, Brake J (1987) Effect of lighting program and nutrition on reproductive performance of molted single comb White Leghorn hens. Poult Sci 66(8):1298–1305

    CAS  PubMed  Google Scholar 

  49. Holt PS (1993) Effect of induced molting on the susceptibility of White Leghorn hens to a Salmonella enteritidis infection. Avian Dis 37(2):412–417

    CAS  PubMed  Google Scholar 

  50. Holt PS, Porter RE Jr (1992) Effect of induced molting on the course of infection and transmission of Salmonella enteritidis in white Leghorn hens of different ages. Poult Sci 71(11):1842–1848

    CAS  PubMed  Google Scholar 

  51. Khan RU, Nikousefat Z, Javdani M, Tufarelli V, Laudadio V (2011) Zinc-induced moulting: production and physiology. World Poult Sci J 67(3):497–505

    Google Scholar 

  52. Creger CR, JT S (1977) Dietary zinc as an effective resting agent for the laying hen. Poult Sci 1706(Abstr):56

    Google Scholar 

  53. Berry WD, Brake J (1985) Comparison of parameters associated with molt induced by fasting, zinc, and low dietary sodium in caged layers. Poult Sci 64:2027–2036

    CAS  Google Scholar 

  54. Park SY, Birkhold SG, Kubena LF, Nisbet DJ, Ricke SC (2004) Effects of high zinc diets using zinc propionate on molt induction, organs, and postmolt egg production and quality in laying hens. Poult Sci 83(1):24–33

    CAS  PubMed  Google Scholar 

  55. Reddy V, Malathi VK, Reddy BV (2008) Effect of induced moulting in male and female line broiler breeder hens by zinc oxide and feed withdrawal methods on post molt performance parameters. Int J Poult Sci 7:586–593

    CAS  Google Scholar 

  56. Abdullah M (2007) Immunohistochemistry of pituitary gland and immunological profiles of moulted chicken. PhD thesis Department of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan

  57. Berry WD, Brake J (1987) Postmolt performance of laying hens molted by high dietary zinc, low dietary sodium, and fasting: egg production and eggshell quality. Poult Sci 66(2):218–226

    CAS  PubMed  Google Scholar 

  58. Johnson AL, Brake J (1992) Zinc-induced molt: evidence for a direct inhibitory effect on granulosa cell steroidogenesis. Poult Sci 71(1):161–167

    CAS  PubMed  Google Scholar 

  59. Garlich JD, Parkhurst CR (1982) Increased egg production by calcium supplementation during the initial fasting period of a forced molt. Poult Sci 61:955–961

    CAS  Google Scholar 

  60. Park SY, Birkhold SG, Kubena LF, Nisbet DJ, Ricke SC (2004) Review on the role of dietary zinc in poultry nutrition, immunity, and reproduction. Biol Trace Elem Res 101(2):147–163

    CAS  PubMed  Google Scholar 

  61. Breeding SW, Brake J, Garlich JD, Johnson AL (1992) Molt induced by dietary zinc in a low-calcium diet. Poult Sci 71(1):168–180

    CAS  PubMed  Google Scholar 

  62. Bain MM (1997) A reinterpretation of eggshell strength. In: Solomon SE (ed) Egg and eggshell quality. Manson Publishing, London, pp 131–142

    Google Scholar 

  63. Olgun O, Yildiz AO (2017) Effects of dietary supplementation of inorganic, organic or nano zinc forms on performance, eggshell quality, and bone characteristics in laying hens. Ann Anim Sci 17(2):463–476

    CAS  Google Scholar 

  64. Abd El-Hack ME, Alagawany M, Salah AS, Abdel-Latif MA, Farghly MFA (2018) Effects of dietary supplementation of zinc oxide and zinc methionine on layer performance, egg quality, and blood serum indices. Biol Trace Elem Res 184(2):456–462

    CAS  PubMed  Google Scholar 

  65. Abd El-Hack ME, Alagawany M, Amer SA, Arif M, Wahdan KMM, El-Kholy MS (2018) Effect of dietary supplementation of organic zinc on laying performance, egg quality and some biochemical parameters of laying hens. J Anim Physiol Anim Nutr (Berl) 102(2):E542–E549

    CAS  Google Scholar 

  66. Min YN, Liu FX, Qi X, Ji S, Ma SX, Liu X, Wang ZP, Gao YP (2018) Effects of methionine hydroxyl analog chelated zinc on laying performance, eggshell quality, eggshell mineral deposition, and activities of Zn-containing enzymes in aged laying hens. Poult Sci 97(10):3587–3593

    CAS  PubMed  Google Scholar 

  67. Amem MH, Al-Daraji HJ (2011) Zinc improves egg quality in Cobb500 broiler breeder females. Int J Poult Sci 10(6):471–476

    CAS  Google Scholar 

  68. Liao X, Li W, Zhu Y, Zhang L, Lu L, Lin X, Luo X (2018) Effects of environmental temperature and dietary zinc on egg production performance, egg quality and antioxidant status and expression of heat-shock proteins in tissues of broiler breeders. Br J Nutr 120(1):3–12

    CAS  PubMed  Google Scholar 

  69. Chen W, Wang S, Zhang HX, Ruan D, Xia WG, Cui YY, Zheng CT, Lin YC (2017) Optimization of dietary zinc for egg production and antioxidant capacity in Chinese egg-laying ducks fed a diet based on corn-wheat bran and soybean meal. Poult Sci 96(7):2336–2343

    CAS  PubMed  Google Scholar 

  70. Zhang YN, Zhang HJ, Wang J, Yue HY, Qi XL, Wu SG, Qi GH (2017) Effect of dietary supplementation of organic or inorganic zinc on carbonic anhydrase activity in eggshell formation and quality of aged laying hens. Poult Sci 96(7):2176–2183

    CAS  PubMed  Google Scholar 

  71. Swiatkiewicz S, Arczewska-Wlosek A, Jozefiak D (2014) The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. World Poult Sci J 70(3):475–485

    Google Scholar 

  72. Stahl JL, Cook ME, Sunde ML (1986) Zinc supplementation: its effect on egg production, feed conversion, fertility, and hatchability. Poult Sci 65(11):2104–2109

    CAS  PubMed  Google Scholar 

  73. Stahl JLGJL, Cook ME (1990) Breeding-hen and progeny performance when hens are fed excessive dietary zinc. Poult Sci 69(2):259–263

    CAS  PubMed  Google Scholar 

  74. Anshan S (1990) Effects of zinc and calcium levels in hen diets on fertility and hatchability of the egg and the filial newborn chick. Sci Agric Sin 6:012

    Google Scholar 

  75. Kidd MT, Qureshi MA, Ferket PR, Thomas LN (2000) Turkey hen zinc source affects progeny immunity and disease resistance. J Appl Poult Res 9(3):414–423

    CAS  Google Scholar 

  76. Durmus I, Atasoglu C, Mizrak C, Ertas S, Kaya M (2004) Effect of increasing zinc concentration in the diets of brown parent stock layers on various production and hatchability traits. Arch Tierzucht 47(5):483–489

    CAS  Google Scholar 

  77. Hudson BP, Dozier WA, Fairchild BD, Wilson JL, Sander JE, Ward TL (2004) Live performance and immune responses of straight-run broilers: influences of zinc source in broiler breeder hen and progeny diets and ambient temperature during the broiler production period. J Appl Poult Res 13(2):291–301

    CAS  Google Scholar 

  78. Hudson BP, Fairchild BD, Wilson JL, Dozier WA, Buhr RJ (2004) Breeder age and zinc source in broiler breeder hen diets on progeny characteristics at hatching. J Appl Poult Res 13(1):55–64

    CAS  Google Scholar 

  79. Gao J, Lv ZP, Li CW, Yue YS, Zhao X, Wang FL, Guo YM (2014) Maternal zinc supplementation enhanced skeletal muscle development through increasing protein synthesis and inhibiting protein degradation of their offspring. Biol Trace Elem Res 162(1–3):309–316

    CAS  PubMed  Google Scholar 

  80. Li C, Guo S, Gao J, Guo Y, Du E, Lv Z, Zhang B (2015) Maternal high-zinc diet attenuates intestinal inflammation by reducing DNA methylation and elevating H3K9 acetylation in the A20 promoter of offspring chicks. J Nutr Biochem 26(2):173–183

    CAS  PubMed  Google Scholar 

  81. Iniguez C, Casas J, Carreres J (1978) Effects of zinc deficiency on the chick embryo blastoderm. Acta Anat (Basel) 101(2):120–129

    CAS  Google Scholar 

  82. Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE (2004) Maternal nutrition and fetal development. J Nutr 134(9):2169–2172

    CAS  PubMed  Google Scholar 

  83. Abdallah AG, Harms RH, Wilson HR, el-Husseiny O (1994) Effect of removing trace minerals from the diet of hens laying eggs with heavy or light shell weight. Poult Sci 73(2):295–301

    CAS  PubMed  Google Scholar 

  84. Heth DA, Sunde ML, Hoekstra WG (1966) Influence of dietary calcium and zinc on zinc-65 metabolism in laying hens and their progeny. Poult Sci 45(1):75–83

    CAS  PubMed  Google Scholar 

  85. Hudson BP, Dozier WA, Wilson JL (2005) Broiler live performance response to dietary zinc source and the influence of zinc supplementation in broiler breeder diets. Anim Feed Sci Technol 118(3–4):329–335

    CAS  Google Scholar 

  86. O'dell BL, Savage JE (1957) Potassium, zinc and distillers dried solubles as supplements to a purified diet. Poult Sci 36:459–460

    CAS  Google Scholar 

  87. Hassan AM (2018) Effect of in ovo injection with nano-selenium or nano-zinc on post-hatch growth performance and physiological traits of broiler chicks. Int J Agric Biol 3(2):350–357

    Google Scholar 

  88. Hudson BP, Dozier WA, Wilson JL, Sander JE, Ward TL (2004) Reproductive performance and immune status of caged broiler breeder hens provided diets supplemented with either inorganic or organic sources of zinc from hatching to 65 wk of age. J Appl Poult Res 13(2):349–359

    CAS  Google Scholar 

  89. Rink L, Gabriel P (2000) Zinc and the immune system. Proc Nutr Soc 59(4):541–552

    CAS  PubMed  Google Scholar 

  90. Ma A, Malynn BA (2012) A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat Rev Immunol 12(11):774–785

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Flinchum JD, Nockels CF, Moreng RE (1989) Aged hens fed zinc-methionine had chicks with improved performance. Poult Sci 68(Suppl. 1):55

    Google Scholar 

  92. Sahin K, Sahin N, Kucuk O, Hayirli A, Prasad AS (2009) Role of dietary zinc in heat-stressed poultry: a review. Poult Sci 88(10):2176–2183

    CAS  PubMed  Google Scholar 

  93. Sahin K, Kucuk O (2003) Zinc supplementation alleviates heat stress in laying Japanese quail. J Nutr 133(9):2808–2811

    CAS  PubMed  Google Scholar 

Download references

Funding

This review was sponsored by National Natural Science Foundation of China (31802080), Guangdong Provincial Natural Science Foundation for Starting Ph.D (2017A030310398 and 2018A030310202), and National Waterfowl Industry Program in China (CARS-42-15).

Author information

Authors and Affiliations

Authors

Contributions

LX researched and wrote the “Semen quality,” “Molting,” and “Egg production and egg quality” sections. HL researched and wrote the “Hatchability and embryonic development” and “Offspring performance” sections. YL and ZYW researched and wrote the Abstract, Introduction, and Conclusion sections. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lin Yang or Yongwen Zhu.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Li, X., Wang, W. et al. The Role of Zinc in Poultry Breeder and Hen Nutrition: an Update. Biol Trace Elem Res 192, 308–318 (2019). https://doi.org/10.1007/s12011-019-1659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-1659-0

Keywords

Navigation