Cadmium Exposure and Blood Telomere Length in Female University Students in Japan

Abstract

Cadmium is a toxic metal found ubiquitously throughout the world. Our study evaluated whether cadmium exposure was associated with telomere length in 73 female university students. Determination of telomere length was performed by quantitative polymerase chain reaction using DNA in blood. Urinary cadmium concentration was measured by inductively coupled plasma mass spectrometry. The students’ physiological attributes and lifestyle were surveyed by means of a self-administered questionnaire. The geometric mean of urinary cadmium concentration was 0.312 μg/g creatinine, which was lower than the levels previously reported for Japan. Urinary cadmium concentration was not significantly associated with telomere length, though the exposure level of the present subjects was similar to that of previous study subjects which found significantly negative associations. It is possible that other factors affected telomere length in this study population.

This is a preview of subscription content, access via your institution.

Abbreviations

BMI:

Body mass index

ICP-MS:

Inductively coupled plasma mass spectrometry

PCR:

Polymerase chain reaction

T/S ratio:

Telomere/single copy gene ratio

References

  1. 1.

    ATSDR (Agency for Toxic Substances and Disease Registry) (2012) Toxicological profile for cadmium. Available: 〈http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=48&tid=15〉 (accessed 28.03.2018)

  2. 2.

    IPCS (International Programmeon Chemical Safety) (1992). Cadmium Environmental health criteria. Available: 〈http://wwwinchemorg/documents/ehc/ehc/ehc134htm〉 (accessed 28.03.2018)

  3. 3.

    FSCJ (Food Safety Commission of Japan) (2008) Pollutants assessment report for cadmium

  4. 4.

    Zota AR, Needham BL, Blackburn EH, Lin J, Park SK, Rehkopf DH, Epel ES (2015) Associations of cadmium and lead exposure with leukocyte telomere length: findings from National Health and Nutrition Examination Survey, 1999-2002. Am J Epidemiol 181:127–136. https://doi.org/10.1093/aje/kwu293

    Article  PubMed  Google Scholar 

  5. 5.

    Lin S, Huo X, Zhang Q, Fan X, Du L, Xu X, Qiu S, Zhang Y, Wang Y, Gu J (2013) Short placental telomere was associated with cadmium pollution in an electronic waste recycling town in China. PLoS One 8:e60815. https://doi.org/10.1371/journal.pone.0060815

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Fillman T, Shimizu-Furusawa H, Ng CFS, Parajuli RP, Watanabe C (2016) Association of cadmium and arsenic exposure with salivary telomere length in adolescents in Terai, Nepal. Environ Res 149:8–14. https://doi.org/10.1016/j.envres.2016.04.037

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Kurenova EV, Mason JM (1997) Telomere functions. A Review Biochem 62:1242–1253

    CAS  Google Scholar 

  8. 8.

    Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579:859–862. https://doi.org/10.1016/j.febslet.2004.11.036

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579. https://doi.org/10.1152/physrev.00026.2007

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Zhou Y, Ning Z, Lee Y, Hambly BD, McLachlan CS (2016) Shortened leukocyte telomere length in type 2 diabetes mellitus: genetic polymorphisms in mitochondrial uncoupling proteins and telomeric pathways. Clin Transl Med 5:8. https://doi.org/10.1186/s40169-016-0089-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Wang J, Dong X, Cao L, Sun Y, Qiu Y, Zhang Y, Cao R, Covasa M, Zhong L (2016) Association between telomere length and diabetes mellitus: a meta-analysis. J Int Med Res 44:1156–1173. https://doi.org/10.1177/0300060516667132

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ma H, Zhou Z, Wei S, Liu Z, Pooley KA, Dunning AM, Svenson U, Roos G, Hosgood HD, Shen M, Wei Q (2011) Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS One 6:e20466. https://doi.org/10.1371/journal.pone.0020466

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zhu X, Han W, Xue W, Zou Y, Xie C, Du J, Jin G (2016) The association between telomere length and cancer risk in population studies. Sci Rep 6:1–10. https://doi.org/10.1038/srep22243

    CAS  Article  Google Scholar 

  14. 14.

    Kume K, Kikukawa M, Hanyu H, Takata Y, Umahara T, Sakurai H, Kanetaka H, Ohyashiki K, Ohyashiki JH, Iwamoto T (2012) Telomere length shortening in patients with dementia with Lewy bodies. Eur J Neurol 19:905–910. https://doi.org/10.1111/j.1468-1331.2011.03655.x

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Honig LS, Kang MS, Schupf N, Lee JH, Mayeux R (2012) Association of shorter leukocyte telomere repeat length with dementia and mortality. Arch Neurol 69:1332–1339

    Article  Google Scholar 

  16. 16.

    O’Donnell CJ, Demissie S, Kimura M, Levy D, Gardner JP, White C, D’Agostino RB, Wolf PA, Polak J, Cupples LA, Aviv A (2008) Leukocyte telomere length and carotid artery intimai medial thickness: the Framingham heart study. Arterioscler Thromb Vasc Biol 28:1165–1171. https://doi.org/10.1161/ATVBAHA.107.154849

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    D’Mello MJJ, Ross SA, Briel M, Anand SS, Gerstein H, Paré G (2015) Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ Cardiovasc Genet 8:82–90. https://doi.org/10.1161/CIRCGENETICS.113.000485

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Epel ES, Prather AA (2018) Stress, telomeres, and psychopathology: toward a deeper understanding of a triad of early aging. Annu Rev Clin Psychol 14:371–397. https://doi.org/10.1146/annurev-clinpsy-032816-045054

    Article  PubMed  Google Scholar 

  19. 19.

    Zhu Y, Liu X, Ding X, Wang F, Geng X (2018) Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 20(1):1–16. https://doi.org/10.1007/s10522-018-9769-1

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344. https://doi.org/10.1016/S0968-0004(02)02110-2

    Article  Google Scholar 

  21. 21.

    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40. https://doi.org/10.1016/J.CBI.2005.12.009

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Huang J, Okuka M, Lu W, Tsibris JCM, McLean MP, Keefe DL, Liu L (2013) Telomere shortening and DNA damage of embryonic stem cells induced by cigarette smoke. Reprod Toxicol 35:89–95. https://doi.org/10.1016/J.REPROTOX.2012.07.003

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ikeda M, Zhang ZW, Moon CS, Shimbo S, Watanabe T, Nakatsuka H, Matsuda-Inoguchi N, Higashikawa K (2000) Possible effects of environmental cadmium exposure on kidney function in the Japanese general population. Int Arch Occup Environ Health 73:15–25. https://doi.org/10.1007/PL00007933

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Ezaki T, Tsukahara T, Moriguchi J, Furuki K, Fukui Y, Ukai H, Okamoto S, Sakurai H, Honda S, Ikeda M (2003) No clear-cut evidence for cadmium-induced renal tubular dysfunction among over 10,000 women in the Japanese general population: a nationwide large-scale survey. Int Arch Occup Environ Health 76:186–196. https://doi.org/10.1007/s00420-002-0389-2

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Rivai IF, Koyama H, Suzuki S (1990) Cadmium content in rice and its daily intake in various countries. Bull Environ Contam Toxicol 44:910–916. https://doi.org/10.1007/BF01702183

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Tsukahara T, Ezaki T, Moriguchi J, Furuki K, Shimbo S, Matsuda-Inoguchi N, Ikeda M (2003) Rice as the most influential source of cadmium intake among general Japanese population. Sci Total Environ 305:41–51. https://doi.org/10.1016/S0048-9697(02)00475-8

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    MizunoY FE, Yoshinaga J (2017) Determination of urinary cadmium by ICP-MS: correction and removal of spectral interference from MoO. Biomed Res Trace Elem 28(4):154–161

    Google Scholar 

  28. 28.

    Bonsnes RW, Taussky HH (1945) On colorimetric determination of creatinine by the Jaffe reaction. J Biol Chem 158:581–591

    CAS  Google Scholar 

  29. 29.

    Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47. https://doi.org/10.1093/nar/30.10.e47

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lin J, Epel E, Cheon J, Kroenke C, Sinclair E, Bigos M, Wolkowitz O, Mellon S, Blackburn E (2010) Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance. J Immunol Methods 352:71–80. https://doi.org/10.1016/j.jim.2009.09.012

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Tucker LA (2017) Caffeine consumption and telomere length in men and women of the National Health and Nutrition Examination Survey (NHANES). Nutr Metab (Lond) 14:10. https://doi.org/10.1186/s12986-017-0162-x

    Article  Google Scholar 

  32. 32.

    Wang H, Kim H, Baik I (2017) Associations of alcohol consumption and alcohol flush reaction with leukocyte telomere length in Korean adults. Nutr Res Pract 11:334–339. https://doi.org/10.4162/nrp.2017.11.4.334

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Wulaningsih W, Serrano FEC, Utarini A, Matsuguchi T, Watkins J (2016) Smoking, second-hand smoke exposure and smoking cessation in relation to leukocyte telomere length and mortality. Oncotarget 7:60419–60431. https://doi.org/10.18632/oncotarget.11051

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Hunt SC, Chen W, Gardner JP, Kimura M, Srinivasan SR, Eckfeldt JH, Berenson GS, Aviv A (2008) Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute family heart study and the Bogalusa heart study. Aging Cell 7:451–458. https://doi.org/10.1111/j.1474-9726.2008.00397.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Tsuda M, Hasunuma R, Kawanishi Y, Okazaki I (1995) Urinary concentrations of heavy metals in healthy Japanese under 20 years of age: a comparison between concentrations expressed in terms of creatinine and of selenium. Tokai J Exp Clin Med 20:53–64

    CAS  PubMed  Google Scholar 

  36. 36.

    Ministry of Agriculture, Forestry and fisheries, 1981-2015. Annual change of Cd intake Available: 〈http://www.maff.go.jp/j/syouan/nouan/kome/k_cd/jitai_sesyu/attach/pdf/01_inv-6.pdf〉 (accessed 28.03.2018)

  37. 37.

    Ministry of Agriculture, Forestry and fisheries, 2003-2016. The tables of supply and demand of food Available: 〈http://www.maff.go.jp/j/zyukyu/fbs/〉 (accessed 28.03.2018)

  38. 38.

    Ministry of Agriculture, Forestry and fisheries, 2016. The results of survey of cadmium in food Available: 〈http://www.maff.go.jp/j/syouan/nouan/kome/k_cd/jitai_sesyu/01_inv.html〉 (accessed 28.03.2018)

  39. 39.

    Houben JMJ, Moonen HJJ, van Schooten FJ, Hageman GJ (2008) Telomere length assessment: biomarker of chronic oxidative stress? Free Radic Biol Med 44:235–246. https://doi.org/10.1016/j.freeradbiomed.2007.10.001

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117. https://doi.org/10.1016/S0300-483X(03)00305-6

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Patra RC, Rautray AK, Swarup D (2011) Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int 2011:1–9. https://doi.org/10.4061/2011/457327

    Article  Google Scholar 

  42. 42.

    Jeng HA, Pan CH, Diawara N, Chang-Chien GP, Lin WY, Huang CT, Ho CK, Wu MT (2011) Polycyclic aromatic hydrocarbon-induced oxidative stress and lipid peroxidation in relation to immunological alteration. Occup Environ Med 68:653–658. https://doi.org/10.1136/oem.2010.055020

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Flora SJS (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51:257–281. https://doi.org/10.1016/j.freeradbiomed.2011.04.008

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Ling X, Zhang G, Chen Q, Yang H, Sun L, Zhou N, Wang Z, Zou P, Wang X, Cui Z, Liu J, Ao L, Cao J (2016) Shorter sperm telomere length in association with exposure to polycyclic aromatic hydrocarbons: results from the MARHCS cohort study in Chongqing, China and in vivo animal experiments. Environ Int 95:79–85. https://doi.org/10.1016/j.envint.2016.08.001

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Pawlas N, Płachetka A, Kozłowska A, Broberg K, Kasperczyk S (2015) Telomere length in children environmentally exposed to low-to-moderate levels of lead. Toxicol Appl Pharmacol 287:111–118. https://doi.org/10.1016/j.taap.2015.05.005

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Mannan T, Ahmed S, Akhtar E, Ahsan K, Haq A, Kippler M, Vahter M, Raqib R (2018) Associations of arsenic exposure with telomere length and naïve T cells in childhood– a birth cohort study. Toxicol Sci 164:539–549. https://doi.org/10.1093/toxsci/kfy105

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Benetos A, Kark JD, Susser E, Kimura M, Sinnreich R, Chen W, Steenstrup T, Christensen K, Herbig U, Von Bornemann Hjelmborg J, Srinivasan SR, Berenson GS, Labat C, Aviv A (2013) Tracking and fixed ranking of leukocyte telomere length across the adult life course. Aging Cell 12:615–621

    CAS  Article  Google Scholar 

  48. 48.

    Vacchi-Suzzi C, Kruse D, Harrington J, Levine K, Meliker JR (2016) Is urinary cadmium a biomarker of long-term exposure in humans? A review. Curr Environ Health Rep 3(4):450–458

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the subjects of this study for their cooperation, and Ms. Yoko Nakamura, Faculty of Life Sciences, Toyo University, for helping with the preparation of the collection of samples.

Funding

This work was funded by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (grant number 16H05254).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Yoshinaga.

Ethics declarations

Conflict of Interest

Shoko Konishi and Jun Yoshinaga have received research grants from the Japan Society for the Promotion of Science.

Yuki Mizuno, Eiji Fujimori, Nobuhiko Kojima and Hideki Imai declare that they have no conflict of interest.

Ethical Approval

This study was approved by the Ethics Committee of Toyo University, Tokyo Healthcare University, and the Faculty of Medicine at the University of Tokyo in Japan.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mizuno, Y., Konishi, S., Imai, H. et al. Cadmium Exposure and Blood Telomere Length in Female University Students in Japan. Biol Trace Elem Res 192, 98–105 (2019). https://doi.org/10.1007/s12011-019-1656-3

Download citation

Keywords

  • Cadmium
  • Female university student
  • Japan
  • Blood telomere length