Skip to main content
Log in

Parenteral Zinc Supplementation Increases Pregnancy Rates in Beef Cows

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc (Zn) is required for normal reproductive performance in cattle. The aim of this study was to evaluate the effect of subcutaneous injection of 400 mg Zn at the beginning of fixed-time artificial insemination (FTAI) on preovulatory follicle and corpus luteum (CL) size, plasma estradiol (E2) and progesterone (P4) concentrations, and pregnancy rates in beef cows. Copper (Cu) concentration and alkaline phosphatase (ALP) activity in plasma were also evaluated. Zinc supplementation at the beginning of the FTAI protocol (day 0) increased the area of preovulatory follicle (APF, day 9; P = 0.042) and plasma P4 concentration (day 16; P = 0.01), whereas plasma E2 concentration (day 9) and area of CL (ACL; day 16) were not modified by Zn supplementation in cows with adequate plasma Zn concentration. Zinc supplementation in Zn-deficient cows increased ACL with respect to controls (P = 0.048) but did not modify plasma E2 concentration. Pregnancy rate on day 41 after FTAI was higher in cows supplemented with Zn compared with controls (80.95% and 51.61%, respectively; P = 0.042). Plasma Zn and Cu concentrations on days 7, 9, and 16 were not affected by Zn supplementation. In conclusion, the results obtained in the present study determined that parenteral Zn supplementation at the beginning of the FTAI protocol increased preovulatory follicle size, plasma P4 concentration, and pregnancy rates in beef cows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McCall KA, Huang CC, Fierke CA (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130:1437–1446

    Article  Google Scholar 

  2. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130(5S Suppl):1447S–1454S

    Article  CAS  PubMed  Google Scholar 

  3. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281(34):24085–24089

    Article  CAS  PubMed  Google Scholar 

  4. Sheikh AA, Aggarwal A, B I, Aarif O (2017) Inorganic zinc supplementation modulates heat shock and immune response in heat stressed peripheral blood mononuclear cells of periparturient dairy cows. Theriogenology 95:75–82

    Article  CAS  PubMed  Google Scholar 

  5. Taneja SK, Kaur R (1990) Pathology of ovary, uterus, vagina and gonadotrophs of female mice fed on Zn-deficient diet. Indian J Exp Biol 28(11):1058–1065

    CAS  PubMed  Google Scholar 

  6. Bedwal RS, Bahuguna A (1994) Zinc, copper and selenium in reproduction. Experientia 50(7):626–640

    Article  CAS  PubMed  Google Scholar 

  7. Zhang JH, Yu J, Li WX, Cheng CP (1998) Evaluation of Mn2+ stimulated and Zn2+ inhibited apoptosis in rat corpus luteal cells by flow cytometry and fluorochromes staining. Chin J Physiol 41(2):121–126

    CAS  PubMed  Google Scholar 

  8. Graham TW, Thurmond MC, Gershwin ME, Picanso JP, Garvey JS, Keen CL (1994) Serum zinc and copper concentrations in relation to spontaneous abortion in cows: implications for human fetal loss. J Reprod Fertil 102(1):253–262

    Article  CAS  PubMed  Google Scholar 

  9. Kynast G, Saling E (1980) The relevance of zinc in pregnancy. J Perinat Med 8:171–182

    Article  CAS  PubMed  Google Scholar 

  10. Apgar J (1985) Zinc and reproduction. Annu Rev Nutr 5:43–68

    Article  CAS  PubMed  Google Scholar 

  11. Apgar J (1992) Zinc and reproduction: an update. J Nutr Biochem 3:266–278

    Article  CAS  Google Scholar 

  12. Simmer K, Thompson RPH (1985) Zinc in the fetus and newborn. Acta Paediatr Scand Suppl 319:158–163

    Article  CAS  PubMed  Google Scholar 

  13. Villa Elizaga I, da Cunha Ferreira RMC (1985) Zinc, pregnancy and parturition. Acta Paediatr Scand Suppl 319:150–157

    Article  CAS  PubMed  Google Scholar 

  14. Swanson CA, King JC (1987) Zinc and pregnancy outcome. Am J Clin Nutr 46:763–771

    Article  CAS  PubMed  Google Scholar 

  15. Campbell DM (1988) Trace element needs in human pregnancy. Proc Nutr Sot 47:45–53

    Article  CAS  Google Scholar 

  16. Valdes-Ramos R (1992) Zinc: a perinatal point of view. Prog Food Nutr Sci 16:279–306

    CAS  PubMed  Google Scholar 

  17. Tamura T, Goldenberg RL (1996) Zinc nutriture and pregnancy outcome. Nutr Res 6(1):139–181

    Article  Google Scholar 

  18. Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S (2016) Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Anim Nutr 2(3):134–141

    Article  PubMed  PubMed Central  Google Scholar 

  19. Underwood EJ, Suttle NF (1999) The mineral nutrition of livestock. CABI Publishing, London

    Google Scholar 

  20. Solomons NW (1979) On the assessment of zinc and copper nutriture in man. Am J Clin Nutr 32(4):856–871

    Article  CAS  PubMed  Google Scholar 

  21. Houghton PL, Lemenager RP, Horstman LA, Hendrix KS, Moss GE (1990) Effects of body composition, pre- and postpartum energy level and early weaning on reproductive performance of beef cows and preweaning calf gain. J Anim Sci 68:438–446

    Google Scholar 

  22. Piper HG, Higgins G (1967) Estimation of trace metals in biological material by atomic absorption spectrophotometry. Proc Assoc Clin Biochem 7:190–195

    Google Scholar 

  23. Aller JF, Callejas SS, Alberio RH (2013) Biochemical and steroid concentrations in follicular fluid and blood plasma in different follicular waves of the estrous cycle from normal and superovulated beef cows. Anim Reprod Sci 142(3–4):113–120

    Article  CAS  PubMed  Google Scholar 

  24. Bowers GN, McComb RB (1975) Measurement of total alkaline phosphatase activity in human serum. Clin Chem 21(13):1988–1995

    Article  CAS  PubMed  Google Scholar 

  25. Nishimura R, Komiyama J, Tasaki Y, Acosta TJ, Okuda K (2008) Hypoxia promotes luteal cell death in bovine corpus luteum. Biol Reprod 78(3):529–536

    Article  CAS  PubMed  Google Scholar 

  26. Noda Y, Ota K, Shirasawa T, Shimizu T (2012) Copper/zinc superoxide dismutase insufficiency impairs progesterone secretion and fertility in female mice. Biol Reprod 86(16):1–8

    PubMed  Google Scholar 

  27. Al-Gubory KH, Garrel C, Faure P, Sugino N (2012) Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reprod BioMed Online 25(6):551–560

    Article  CAS  PubMed  Google Scholar 

  28. Kawaguchi S, Sakumoto R, Okuda K (2013) Induction of the expressions of antioxidant enzymes by luteinizing hormone in the bovine corpus luteum. J Reprod Dev 59(3):219–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ho E (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15(10):572–578

    Article  CAS  PubMed  Google Scholar 

  30. Borchelt DR, Lee MK, Slunt HS, Guarnieri M, Xu ZS, Wong PC, Brown RH Jr, Price DL, Sisodia SS, Cleveland DW (1994) Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci U S A 91(17):8292–8296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sahawneh MA, Ricart KC, Roberts BR, Bomben VC, Basso M, Ye Y, Sahawneh J, Franco MC, Beckman JS, Estévez AG (2010) Cu,Zn-superoxide dismutase increases toxicity of mutant and zinc-deficient superoxide dismutase by enhancing protein stability. J Biol Chem 285(44):33885–33897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Forde N, Beltman ME, Duffy GB, Duffy P, Mehta JP, O’Gaora P, Roche JF, Lonergan P, Crowe MA (2011) Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating concentrations of progesterone and consequences for conceptus elongation. Biol Reprod 84:266–278

    Article  CAS  PubMed  Google Scholar 

  33. Forde N, Mehta JP, Minten M, Crowe MA, Roche JF, Spencer TE, Lonergan P (2012) Effects of low progesterone on the endometrial transcriptome in cattle. Biol Reprod 87:124

    Article  PubMed  Google Scholar 

  34. Mann GE, Lamming GE (2001) Relationship between maternal endocrine environment, early embryo development and inhibition of the luteolytic mechanism in cows. Reproduction 121:175–180

    Article  CAS  PubMed  Google Scholar 

  35. Green MP, Hunter MG, Mann GE (2005) Relationships between maternal hormone secretion and embryo development on day 5 of pregnancy in dairy cows. Anim Reprod Sci 88:179–189

    Article  CAS  PubMed  Google Scholar 

  36. Garrett JE, Geisert RD, Zavy MT, Morgan GL (1988) Evidence for maternal regulation of early conceptus growth and development in beef cattle. J Reprod Fertil 84:437–446

    Article  CAS  PubMed  Google Scholar 

  37. Mann GE, Lamming GE, Fray MD (1995) Plasma oestradiol and progesterone during early pregnancy in the cow and the effects of treatment with buserelin. Anim Reprod Sci 37:121–131

    Article  CAS  Google Scholar 

  38. McNeill RE, Diskin MG, Sreenan JM, Morris DG (2006) Associations between milk progesterone concentrations on different days and with embryo survival during the early luteal phase in dairy cows. Theriogenology 65:1435–1441

    Article  CAS  PubMed  Google Scholar 

  39. Stronge AJ, Sreenan JM, Diskin ME, Mee JF, Kenny DA, Morris DG (2005) Post-insemination milk progesterone concentrations and embryo survival in dairy cows. Theriogenology 64:1212–1224

    Article  CAS  PubMed  Google Scholar 

  40. Rhinehart JD, Starbuck-Clemmer MJ, Flores JA, Milvae RA, Yao J, Poole DH, Inskeep EK (2009) Low peripheral progesterone and late embryonic/early fetal loss in suckled beef and lactating dairy cows. Theriogenology 71(3):480–490

    Article  CAS  PubMed  Google Scholar 

  41. Kenyon AG, Mendonca LGD, Lopes G, Lima JR, Santos JEP, Chebel RC (2012) Minimal progesterone concentration required for embryo survival after embryo transfer in lactating Holstein cows. Anim Reprod Sci 136:223–230

    Article  PubMed  CAS  Google Scholar 

  42. Olson PA, Brink DR, Hickok DT, Carlson MP, Schneider NR, Deutscher GH, Adams DC, Colburn DJ, Johnson AB (1999) Effects of supplementation of organic and inorganic combinations of copper, cobalt, manganese, and zinc above nutrient requirement levels on postpartum two-year-old cows. J Anim Sci 77(3):522–532

    Article  CAS  PubMed  Google Scholar 

  43. Ahola JK, Baker DS, Burns PD, Mortimer RG, Enns RM, Whittier JC, Geary TW, Engle TE (2004) Effect of copper, zinc, and manganese supplementation and source on reproduction, mineral status, and performance in grazing beef cattle over a two-year period. J Anim Sci 82(8):2375–2383

    Article  CAS  PubMed  Google Scholar 

  44. Black DH, French NP (2004) Effects of three types of trace element supplementation on the fertility of three commercial dairy herds. Vet Rec 154(21):652–658

    Article  CAS  PubMed  Google Scholar 

  45. Vanegas JA, Reynolds J, Atwill ER (2004) Effects of an injectable trace mineral supplement on first-service conception rate of dairy cows. J Dairy Sci 87(11):3665–3671

    Article  CAS  PubMed  Google Scholar 

  46. Siciliano-Jones JL, Socha MT, Tomlinson DJ, DeFrain JM (2008) Effect of trace mineral source on lactation performance, claw integrity, and fertility of dairy cattle. J Dairy Sci 91(5):1985–1995

    Article  CAS  PubMed  Google Scholar 

  47. González-Maldonado J, Rangel-Santos R, Rodríguez-de Lara R, García-Peña O (2017) Effect of injectable trace mineral complex supplementation on development of ovarian structures and serum copper and zinc concentrations in over-conditioned Holstein cows. Anim Reprod Sci 181:57–62

    Article  PubMed  CAS  Google Scholar 

  48. Rabiee AR, Lean IJ, Stevenson MA, Socha MT (2010) Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: a meta-analysis. J Dairy Sci 93(9):4239–4251

    Article  CAS  PubMed  Google Scholar 

  49. Swenerton H, Hurley LS (1980) Zinc deficiency in rhesus and bonnet monkeys, including effects on reproduction. J Nutr 110(3):575–583

    Article  CAS  PubMed  Google Scholar 

  50. Ceko MJ, Hummitzsch K, Bonner WM, Aitken JB, Spiers KM, Rodgers RJ, Harris HH (2015) Localization of the trace elements iron, zinc and selenium in relation to anatomical structures in bovine ovaries by X-Ray fluorescence imaging. Microsc Microanal 21(3):695–705

    Article  CAS  PubMed  Google Scholar 

  51. Snook RB, Brunner MA, Saatman RR, Hansel W (1969) The effect of antisera to bovine LH in hysterectomized and intact heifers. Biol Reprod 1(1):49–58

    Article  CAS  PubMed  Google Scholar 

  52. McNeilly AS, Fraser HM (1987) Effect of gonadotrophin-releasing hormone agonist-induced suppression of LH and FSH on follicle growth and corpus luteum function in the ewe. J Endocrinol 115(2):273–282

    Article  CAS  PubMed  Google Scholar 

  53. Weems YS, Lammoglia MA, Vera-Avila HR, Randel RD, King C, Sasser RG, Weems CW (1998) Effect of luteinizing hormone (LH), PGE2, 8-EPI-PGE1, 8-EPI-PGE2, trichosanthin, and pregnancy specific protein B (PSPB) on secretion of progesterone in vitro by corpora lutea (CL) from nonpregnant and pregnant cows. Prostaglandins Other Lipid Mediat 55(1):27–42

    Article  CAS  PubMed  Google Scholar 

  54. Kumar P, Sait SF (2011) Luteinizing hormone and its dilemma in ovulation induction. J Hum Reprod Sci 4(1):2–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deuster PA, Dolev E, Bernier LL, Trostmann UH (1987) Magnesium and zinc status during the menstrual cycle. Am J Obstet Gynecol 154:964–968

    Article  Google Scholar 

  56. Bremner I, Young BW, Mills CF (1976) Protective effect of zinc supplementation against copper toxicosis in sheep. Br J Nutr 36(3):551–561

    Article  CAS  PubMed  Google Scholar 

  57. Hill GM, Ku PK, Miller ER, Ullrey DE, Losty TA, O'Dell BL (1983) A copper deficiency in neonatal pigs induced by a high zinc maternal diet. J Nutr 113(4):867–872

    Article  CAS  PubMed  Google Scholar 

  58. Hurley LS (1981) The roles of trace elements in foetal and neonatal development. Philos Trans R Soc Lond Ser B Biol Sci 294(1071):145–152

    CAS  Google Scholar 

  59. Enjalbert F, Lebreton P, Salat O (2006) Effects of copper, zinc and selenium status on performance and health in commercial dairy and beef herds: retrospective study. J Anim Physiol Anim Nutr 90:459–466

    Article  CAS  Google Scholar 

  60. Rosa DE, Fazzio LE, Picco SJ, Furnus CC, Mattioli GA (2008) Metabolismo y deficiencia de zinc en bovinos. Analecta Vet 28:34–44

    Google Scholar 

  61. Pieper L, Schmidt F, Müller AE, Staufenbiel R (2017) Zinc concentrations in different sample media from dairy cows and establishment of reference values. Tierarztl Prax Ausg G Grosstiere Nutztiere 45(4):213–218

    Article  PubMed  Google Scholar 

  62. Weismann K, Høyer H (1985) Serum alkaline phosphatase and serum zinc levels in the diagnosis and exclusion of zinc deficiency in man. Am J Clin Nutr 41(6):1214–1219

    Article  CAS  PubMed  Google Scholar 

  63. Naber TH, Baadenhuysen H, Jansen JB, van den Hamer CJ, van den Broek W (1996) Serum alkaline phosphatase activity during zinc deficiency and long-term inflammatory stress. Clin Chim Acta 249(1–2):109–127

    Article  CAS  PubMed  Google Scholar 

  64. Sheikh G, Masood Q, Majeed S, Hassan I (2015) Comparison of levels of serum copper, zinc, albumin, globulin and alkaline phosphatase in psoriatic patients and controls: a hospital based case control study. Indian Dermatol Online J 6(2):81–83

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ray C. S, Singh B, Jena I, Behera S, Ray S (2017) Low alkaline phosphatase (ALP) in adult population an indicator of zinc (Zn) and magnesium (mg) deficiency. Curr Res Nutr Food Sci 5(3)

Download references

Acknowledgements

We are grateful to Mr. Juan Américo Anchordoquy, owner of Establecimiento “Las Magnolias,” and Mr. Oscar García Alzueta, owner of Establecimiento “Doña Emma,” for allowing us to use their animals and facilities. The authors also appreciate Mr. Ricardo Pagola and M.V. Martín Daniele cooperation in the development of this work. Thanks are also due to A. Di Maggio for manuscript correction and editing.

Funding

This work was supported by Grants PICT 2016-2131 and PICT 2016-3727 from Agencia Nacional de Promoción Científica y Tecnológica de la República Argentina (MINCyT).

Author information

Authors and Affiliations

Authors

Contributions

J.M.A., J.P.A., N.N, E.M.G., and C.C.F. conceived and designed the experiments; E.M.G, N.A.F., and J.M.A. conducted the experiments; M.J.G. analyzed the data; C.F., J.M.A., and L.E.F. critically wrote and revised the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to C. C. Furnus.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anchordoquy, J.M., Anchordoquy, J.P., Galarza, E.M. et al. Parenteral Zinc Supplementation Increases Pregnancy Rates in Beef Cows. Biol Trace Elem Res 192, 175–182 (2019). https://doi.org/10.1007/s12011-019-1651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-1651-8

Keywords

Navigation