Skip to main content
Log in

Strontium Ameliorates Glucocorticoid Inhibition of Osteogenesis Via the ERK Signaling Pathway

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Glucocorticoid (GC) has been widely used in clinical work due to its anti-inflammatory and immune-inhibitory properties. However, long-term or high-dose administration is associated with side effects, such as GC-induced osteoporosis (GIOP), which causes great pain for and poses a heavy financial burden on patients. We sought to investigate the potential effects of strontium on GIOP and further explore its underlying mechanisms, including its reversal of the inhibitory effect of GC on osteogenesis of bone marrow–derived mesenchymal stem cells (BMSCs). We incubated BMSCs with Dexamethasone (DEX) in combination with or without strontium and then measured osteogenic and adipogenic gene expression levels by RT-qPCR and Western blot. We added a specific ERK signaling pathway inhibitor, U0126, to evaluate the involvement of that pathway. Strontium promoted osteogenic differentiation and matrix mineralization in DEX-treated BMSCs, accompanied by upregulation of RUNX2, Osx, ALP, BSP, COL1A1, and OCN. DEX blocked the expression of several osteogenesis-related marker genes by activating the ERK signaling pathway. U0126 attenuated the suppression of osteogenesis in DEX-treated BMSCs. These results suggested that strontium could enhance osteogenic differentiation and matrix mineralization by counteracting DEX’s inhibitory effect on osteogenesis via the ERK signaling pathway. Therefore, strontium might be a promising therapeutic agent for GIOP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Üsküdar Cansu D, Bodakçi E, Korkmaz C (2018) Dose-dependent bradycardia as a rare side effect of corticosteroids: a case report and review of the literature. Rheumatol Int 38:2337–2343

    Article  PubMed  Google Scholar 

  2. Nayak S, Roberts MS, Greenspan SL (2011) Cost-effectiveness of different screening strategies for osteoporosis in postmenopausal women. Ann Intern Med 155:751–761

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang Y, Liu J, Pang Q, Tao D (2017) Alpinumisoflavone protects against glucocorticoid-induced osteoporosis through suppressing the apoptosis of osteoblastic and osteocytic cells. Biomed Pharmacother 96:993–999

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y, Porta A, Peng X, Gengaro K, Cunningham EB, Li H, Dominguez LA, Bellido T, Christakos S (2004) Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin-D28k. J Bone Miner Res 19:479–490

    Article  CAS  PubMed  Google Scholar 

  5. Yeung DK, Griffith JF, Antonio GE, Lee FK, Woo J, Leung PC (2005) Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging 22:279–285

    Article  PubMed  Google Scholar 

  6. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 41:41–49

    Article  CAS  Google Scholar 

  7. Kfoury Y, Scadden DT (2015) Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16:239–253

    Article  CAS  PubMed  Google Scholar 

  8. Chen Q, Shou P, Zhang L (2014) An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells 32:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang L, Niu N, Li L (2018) H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells. PLoS Biol:16e2006522

  10. Li J, Zhang N, Huang X et al (2013) Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation. Cell Death Dis 4:e832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen W, Chen J, Gantz M, Punyanitya M, Heymsfield SB, Gallagher D, Albu J, Engelson E, Kotler D, Pi-Sunyer X, Gilsanz V (2012) MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older adults. Eur J Clin Nutr 66:983–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, Xia ZY, Zhou HD, Cao X, Xie H, Liao EY, Luo XH (2015) MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 125:1509–1522

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim HY, Park SY, Choung SY (2018) Enhancing effects of myricetin on the osteogenic differentiation of human periodontal ligament stem cells via BMP-2/Smad and ERK/JNK/p38 mitogen-activated protein kinase signaling pathway. Eur J Pharmacol 834:84–91

    Article  CAS  PubMed  Google Scholar 

  14. Zhai Y, Tyagi SC, Tyagi N (2017) Cross-talk of MicroRNA and hydrogen sulfide: a novel therapeutic approach for bone diseases. Biomed Pharmacother 92:1073–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cordenonsi M, Montagner M, Adorno M (2007) Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 315:840–843

    Article  CAS  PubMed  Google Scholar 

  16. Ye C, Chen M, Chen E (2018) Knockdown of FOXA2 enhances the osteogenic differentiation of bone marrow-derived mesenchymal stem cells partly via activation of the ERK signalling pathway. Cell Death Dis 9:836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Shen MJ, Wang GG, Wang YZ, Xie J, Ding X (2018) Nell-1 enhances osteogenic differentiation of pre-osteoblasts on titanium surfaces via the MAPK-ERK signaling pathway. Cell Physiol Biochem 50:1522–1534

    Article  CAS  PubMed  Google Scholar 

  18. Hu H, Li Z, Lu M, Yun X, Li W, Liu C, Guo A (2018) Osteoactivin inhibits dexamethasone-induced osteoporosis through up-regulating integrin β1 and activate ERK pathway. Biomed Pharmacother 105:66–72

    Article  CAS  PubMed  Google Scholar 

  19. Jin Y, Zhang W, Liu Y, Zhang M, Xu L, Wu Q, Zhang X, Zhu Z, Huang Q, Jiang X (2014) rhPDGF-BB via ERK pathway osteogenesis and adipogenesis balancing in ADSCs for critical-sized calvarial defect repair. Tissue Eng Part A 20:3303–3313

    Article  CAS  PubMed  Google Scholar 

  20. Wu Z, Ou L, Wang C, Yang L, Wang P, Liu H, Xiong Y, Sun K, Zhang R, Zhu X (2017) Icaritin induces MC3T3-E1 subclone14 cell differentiation through estrogen receptor-mediated ERK1/2 and p38 signaling activation. Biomed Pharmacother 94:1–9

    Article  CAS  PubMed  Google Scholar 

  21. Kim BS, Kang HJ, Park JY, Lee J (2015) Fucoidan promotes osteoblast differentiation via JNK- and ERK-dependent BMP2-Smad 1/5/8 signaling in human mesenchymal stem cells. Exp Mol Med 47:e128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li B, Zhao J, Ma JX, Li GM, Zhang Y, Xing GS, Liu J, Ma XL (2018) Overexpression of DNMT1 leads to hypermethylation of H19 promoter and inhibition of Erk signaling pathway in disuse osteoporosis. Bone 111:82–91

    Article  PubMed  CAS  Google Scholar 

  23. Guo X, Wei S, Lu M et al (2018) RNA-Seq investigation and in vivo study the effect of strontium ranelate on ovariectomized rat via the involvement of ROCK1. Artif Cells Nanomed Biotechnol 30:1–13

    Google Scholar 

  24. Geng T, Chen X, Zheng M et al (2018) Effects of strontium ranelate on wear particle-induced aseptic loosening in female ovariectomized mice. Mol Med Rep 18:1849–1857

    CAS  PubMed  Google Scholar 

  25. Liu X, Zhu S, Cui J, Shao H, Zhang W, Yang H, Xu Y, Geng D, Yu L (2014) Strontium ranelate inhibits titanium-particle-induced osteolysis by restraining inflammatory osteoclastogenesis in vivo. Acta Biomater 10:4912–4918

    Article  CAS  PubMed  Google Scholar 

  26. Sun P, Cai DH, Li QN, Chen H, Deng WM, He L, Yang L (2010) Effects of alendronate and strontium ranelate on cancellous and cortical bone mass in glucocorticoid-treated adult rats. Calcif Tissue Int 86:495–501

    Article  CAS  PubMed  Google Scholar 

  27. Liu P, Lee S, Knoll J et al (2017) Loss of menin in osteoblast lineage affects osteocyte-osteoclast crosstalk causing osteoporosis. Cell Death Differ 24:672–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ballane G, Cauley JA, Luckey MM, El-Hajj Fuleihan G (2017) Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos Int 28:1531–1542

    Article  CAS  PubMed  Google Scholar 

  29. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 37:1276–1287

    Article  CAS  Google Scholar 

  30. Rizzoli R, Biver E (2015) Glucocorticoid-induced osteoporosis: who to treat with what agent? Nat Rev Rheumatol 11(2):98–109

    Article  CAS  PubMed  Google Scholar 

  31. Buckley L, Guyatt G, Fink HA, Cannon M, Grossman J, Hansen KE, Humphrey MB, Lane NE, Magrey M, Miller M, Morrison L, Rao M, Byun Robinson A, Saha S, Wolver S, Bannuru RR, Vaysbrot E, Osani M, Turgunbaev M, Miller AS, McAlindon T (2017) 2017 American College of Rheumatology Guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res 69:1095–1110

  32. Coskun Benlidayi I (2018) Denosumab in the treatment of glucocorticoid-induced osteoporosis. Rheumatol Int 38:1975–1984

    Article  CAS  PubMed  Google Scholar 

  33. Cao Y, Gomes SA, Rangel EB, Paulino EC, Fonseca TL, Li J, Teixeira MB, Gouveia CH, Bianco AC, Kapiloff MS, Balkan W, Hare JM (2015) S-nitrosoglutathione reductase-dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis. J Clin Invest 125:1679–1691

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wei J, Shimazu J, Makinistoglu MP, Maurizi A, Kajimura D, Zong H, Takarada T, Lezaki T, Pessin JE, Hinoi E, Karsenty G (2015) Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 161:1576–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu Z, Yan D, Xie Z, Weng S, Zhou Q, Li H, Bai B, Boodhun V, Shen Z, Tang J, Yang L (2018) Combined treatment with cinnamaldehyde and PTH enhances the therapeutic effect on glucocorticoid-induced osteoporosis through inhibiting osteoclastogenesis and promoting osteoblastogenesis. Biochem Biophys Res Commun 505:945–950

    Article  CAS  PubMed  Google Scholar 

  36. Jing Z, Wang C, Yang Q, Wei X, Jin Y, Meng Q, Liu Q, Liu Z, Ma X, Liu K, Sun H, Liu M (2019) Luteolin attenuates glucocorticoid-induced osteoporosis by regulating ERK/Lrp-5/GSK-3β signaling pathway in vivo and in vitro. J Cell Physiol 234:4472–4490

    Article  CAS  PubMed  Google Scholar 

  37. Liu S, Yang L, Mu S, Fu Q (2018) Epigallocatechin-3-gallate ameliorates glucocorticoid-induced osteoporosis of rats in vivo and in vitro. Front Pharmacol 9:447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adhikary S, Choudhary D, Ahmad N, Karvande A, Kumar A, Banala VT, Mishra PR, Trivedi R (2018) Dietary flavonoid kaempferol inhibits glucocorticoid-induced bone loss by promoting osteoblast survival. Nutrition 53:64–76

    Article  CAS  PubMed  Google Scholar 

  39. Vidal C, Gunaratnam K, Tong J, Duque G (2013) Biochemical changes induced by strontium ranelate in differentiating adipocytes. Biochimie 95:793–798

    Article  CAS  PubMed  Google Scholar 

  40. Saidak Z, Haÿ E, Marty C, Barbara A, Marie PJ (2012) Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling. Aging Cell 11:467–474

    Article  CAS  PubMed  Google Scholar 

  41. Fuchs RK, Allen MR, Condon KW, Reinwald S, Miller LM, McClenathan D, Keck B, Phipps RJ, Burr DB (2008) Strontium ranelate does not stimulate bone formation in ovariectomized rats. Osteoporos Int 19:1331–1341

    Article  CAS  PubMed  Google Scholar 

  42. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X, Xu C, Zhang L, Yang H, Hou J, Wang Y, Shi Y (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23:1128–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896

    Article  CAS  PubMed  Google Scholar 

  44. Huang W, Yang S, Shao J, Li YP (2007) Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 12:3068–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fournier C, Perrier A, Thomas M, Laroche N, Dumas V, Rattner A, Vico L, Guignandon A (2012) Reduction by strontium of the bone marrow adiposity in mice and repression of the adipogenic commitment of multipotent C3H10T1/2 cells. Bone 50:499–509

    Article  CAS  PubMed  Google Scholar 

  46. Jia X, Long Q, Miron RJ (2017) Setd2 is associated with strontium-induced bone regeneration. Acta Biomater 53:495–505

    Article  CAS  PubMed  Google Scholar 

  47. Aimaiti A, Maimaitiyiming A, Boyong X et al (2017) Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway. Stem Cell Res Ther 8:282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81860396) and the National Natural Science Foundation of China-Xinjiang joint fund (U1503221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cao Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aimaiti, A., Wahafu, T., Keremu, A. et al. Strontium Ameliorates Glucocorticoid Inhibition of Osteogenesis Via the ERK Signaling Pathway. Biol Trace Elem Res 197, 591–598 (2020). https://doi.org/10.1007/s12011-019-02009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-02009-6

Keywords

Navigation