Skip to main content
Log in

Iron Dyshomeostasis Participated in Rat Hippocampus Toxicity Caused by Aluminum Chloride

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Aluminum (Al) alters iron regulatory factors content and leads to the changes in iron-related proteins causing iron accumulation. But limited evidence ascertains this hypothesis. Therefore, our experiment was conducted and four groups of male Wistar rats were orally administrated of 0, 50, 150, and 450 mg/kg BW/d aluminum chloride (AlCl3) for 90 days by drinking water, respectively. The cognitive function, pathological lesion of hippocampus, oxidative stress, as well as iron-related proteins and iron regulatory factors expression were detected. The results showed that AlCl3 remarkably induced the oxidative stress and pathological lesion in the hippocampus and impaired the learning-memory ability. The contents of Al and iron increased in all AlCl3-exposed groups. Meanwhile, the increased divalent metal transporter 1 (DMT1) expression enhanced iron import and the decreased ferroportin 1 (Fpn1) expression reduced iron export in AlCl3-exposed groups. The iron accumulated and ferritin heavy chains (Fth) expression decreased in all AlCl3-exposed groups led to an increase in free iron. The study also showed that iron regulatory factor iron regulatory protein 2 (IRP2) was decreased and hepcidin was increased in AlCl3-exposed groups. The results indicated that AlCl3 induces iron dyshomeostasis presenting as iron accumulation, the disordered expression of iron import, export, store, and regulatory proteins in rat hippocampus accompanied with oxidative stress, pathological lesion, and impaired learning-memory ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bondy SC (2016) Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration. Neurotoxicology 52:222–229

    CAS  PubMed  Google Scholar 

  2. Burrell SA, Exley C (2010) There is (still) too much aluminium in infant formulas. BMC Pediatr 10:63

    PubMed  PubMed Central  Google Scholar 

  3. Wong MH, Fung KF, Carr HP (2003) Aluminium and fluoride contents of tea, with emphasis on brick tea and their health implications. Toxicol Lett 137(1–2):111–120

    CAS  PubMed  Google Scholar 

  4. Yokel RA, Hicks CL, Florence RL (2008) Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese. Food Chem Toxicol 46(6):2261–2266

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yokel RA (2000) The toxicology of aluminum in the brain: a review. Neurotoxicology 21(5):813–828

    CAS  PubMed  Google Scholar 

  6. Lal B, Gupta A, Gupta A, Murthy RC, Ali MM, Chandra SV (1993) Aluminum ingestion alters behaviour and some neurochemicals in rats. Indian J Exp Biol 31(1):30–35

    CAS  PubMed  Google Scholar 

  7. Bondy SC (2014) Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology 315:1–7

    CAS  PubMed  Google Scholar 

  8. Mehpara Farhat S, Mahboob A, Ahmed T (2019) Oral exposure to aluminum leads to reduced nicotinic acetylcholine receptor gene expression, severe neurodegeneration and impaired hippocampus dependent learning in mice. Drug Chem Toxico:1–9

  9. Nie J, Lv S, Fu X, Niu Q (2019) Effects of Al exposure on mitochondrial dynamics in rat Hippocampus. Neurotox Res 36(2):334–346

    CAS  PubMed  Google Scholar 

  10. Li HQ, Ip SP, Zheng GQ, Xian YF, Lin ZX (2018) Isorhynchophylline alleviates learning and memory impairments induced by aluminum chloride in mice. Chin Med 13:29

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cao Z, Wang PY, Gao X, Shao B, Zhao SC, Li YF (2019) Lycopene attenuates aluminum-induced hippocampal lesions by inhibiting oxidative stress-mediated inflammation and apoptosis in the rat. J Inorg Biochem 193:143–151

    CAS  PubMed  Google Scholar 

  12. Sharma DR, Sunkaria A, Wani WY, Sharma RK, Kandimalla RJ, Bal A, Gill KD (2013) Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1alpha expression. Toxicol Appl Pharmacol 273(2):365–380

    CAS  PubMed  Google Scholar 

  13. Yang X, Zhang X, Zhang J, Ji Q, Huang W, Zhang X, Li Y (2019) Spermatogenesis disorder caused by T-2 toxin is associated with germ cell apoptosis mediated by oxidative stress. Environ Pollut 251:372–379

    CAS  PubMed  Google Scholar 

  14. Xie CX, Mattson MP, Lovell MA, Yokel RA (1996) Intraneuronal aluminum potentiates iron-induced oxidative stress in cultured rat hippocampal neurons. Brain Res 743(1–2):271–277

    CAS  PubMed  Google Scholar 

  15. Ward RJ, Zhang Y, Crichton RR (2001) Aluminium toxicity and iron homeostasis. J Inorg Biochem 87(1–2):9–14

    CAS  PubMed  Google Scholar 

  16. Wu Z, Du Y, Xue H, Wu Y, Zhou B (2012) Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiol aging 33 (1):199 e191-112

  17. Rouault TA (2013) Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14(8):551–564

    CAS  PubMed  Google Scholar 

  18. Zhu G, Fan G, Feng C, Li Y, Chen Y, Zhou F, Du G, Jiao H, Liu Z, Xiao X, Lin F, Yan J (2013) The effect of lead exposure on brain iron homeostasis and the expression of DMT1/FP1 in the brain in developing and aged rats. Toxicol Lett 216(2–3):108–123

    CAS  PubMed  Google Scholar 

  19. Pang L, Wang J, Huang W, Guo S (2015) A study of divalent metal transporter 1 and ferroportin 1 in brain of rats with manganese-induced parkinsonism. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 33(4):250–254

    CAS  PubMed  Google Scholar 

  20. Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, Gonzalez-Billault C, Nunez MT (2013) Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem 126(4):541–549

    CAS  PubMed  Google Scholar 

  21. Wang GQ, Hu WM, Tang QP, Wang L, Sun XG, Chen YL, Yin YF, Xue F, Sun ZT (2016) Effect comparison of both iron chelators on outcomes, iron deposit, and iron transporters after intracerebral hemorrhage in rats. Mol Neurobiol 53(6):3576–3585

    CAS  PubMed  Google Scholar 

  22. Kim Y, Olivi L, Cheong JH, Maertens A, Bressler JP (2007) Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells. Toxicol Appl Pharmacol 220(3):349–356

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamanaka K, Minato N, Iwai K (1999) Stabilization of iron regulatory protein 2, IRP2, by aluminum. FEBS Lett 462(1–2):216–220

    CAS  PubMed  Google Scholar 

  24. Cao Z, Yang X, Zhang H, Wang H, Huang W, Xu F, Zhuang C, Wang X, Li Y (2016) Aluminum chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rat. Chemosphere 151:289–295

    CAS  PubMed  Google Scholar 

  25. Zhang L, Jin C, Lu X, Yang J, Wu S, Liu Q, Chen R, Bai C, Zhang D, Zheng L, Du Y, Cai Y (2014) Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats. Toxicology 323:95–108

    CAS  PubMed  Google Scholar 

  26. Lockman PR, Van der Schyf CJ, Abbruscato TJ, Allen DD (2005) Chronic nicotine exposure alters blood-brain barrier permeability and diminishes brain uptake of methyllycaconitine. J Neurochem 94(1):37–44

    CAS  PubMed  Google Scholar 

  27. Huang W, Cheng P, Yu K, Han Y, Song M, Li Y (2017) Hyperforin attenuates aluminum-induced Abeta production and tau phosphorylation via regulating Akt/GSK-3beta signaling pathway in PC12 cells. Biomed Pharmacother 96:1–6

    CAS  PubMed  Google Scholar 

  28. Zhu YZ, Hu CW, Zheng PH, Miao LG, Yan XJ, Wang ZY, Gao B, Li YF (2016) Ginsenoside Rb1 alleviates aluminum chloride-induced rat osteoblasts dysfunction. Toxicology 368:183–188

    PubMed  Google Scholar 

  29. Crapper DR, Krishnan SS, Dalton AJ (1973) Brain aluminum distribution in Alzheimer's disease and experimental neurofibrillary degeneration. Science 180(4085):511–513

    CAS  PubMed  Google Scholar 

  30. Julka D, Vasishta RK, Gill KD (1996) Distribution of aluminum in different brain regions and body organs of rat. Biol Trace Elem Res 52(2):181–192

    CAS  PubMed  Google Scholar 

  31. Walton JR (2012) Cognitive deterioration and associated pathology induced by chronic low-level aluminum ingestion in a translational rat model provides an explanation of Alzheimer's disease, tests for susceptibility and avenues for treatment. Int J Alzheimers Dis 2012:914947

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M (2016) Oxidative stress in neurodegenerative diseases. Mol Neurobiol 53(6):4094–4125

    CAS  PubMed  Google Scholar 

  33. Kumar V, Gill KD (2009) Aluminium neurotoxicity: neurobehavioural and oxidative aspects. Arch Toxicol 83(11):965–978

    CAS  PubMed  Google Scholar 

  34. Yang X, Yu K, Wang H, Zhang H, Bai C, Song M, Han Y, Shao B, Li Y, Li X (2018) Bone impairment caused by AlCl3 is associated with activation of the JNK apoptotic pathway mediated by oxidative stress. Food Chem Toxicol 116 (Pt B):307-314

  35. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Garrick LM, Dolan KG, Romano MA, Garrick MD (1999) Non-transferrin-bound iron uptake in Belgrade and normal rat erythroid cells. J Cell Physiol 178(3):349–358

    CAS  PubMed  Google Scholar 

  37. Lu LN, Qian ZM, Wu KC, Yung WH, Ke Y (2017) Expression of Iron transporters and pathological hallmarks of Parkinson's and Alzheimer's diseases in the brain of young, adult, and aged rats. Mol Neurobiol 54(7):5213–5224

    CAS  PubMed  Google Scholar 

  38. Hirsch EC (2009) Iron transport in Parkinson's disease. Parkinsonism Relat Disord 15(Suppl 3):S209–S211

    PubMed  Google Scholar 

  39. Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278(29):27144–27148

    CAS  PubMed  Google Scholar 

  40. Xu J, Ling EA (1994) Studies of the ultrastructure and permeability of the blood-brain barrier in the developing corpus callosum in postnatal rat brain using electron dense tracers. J Anat 184(Pt 2):227–237

    PubMed  PubMed Central  Google Scholar 

  41. Boserup MW, Lichota J, Haile D, Moos T (2011) Heterogenous distribution of ferroportin-containing neurons in mouse brain. Biometals 24(2):357–375

    CAS  PubMed  Google Scholar 

  42. Dringen R, Bishop GM, Koeppe M, Dang TN, Robinson SR (2007) The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res 32(11):1884–1890

    CAS  PubMed  Google Scholar 

  43. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1(3):191–200

    CAS  PubMed  Google Scholar 

  44. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM (1992) Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem 267(25):18148–18153

    CAS  PubMed  Google Scholar 

  45. Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, Land W, Ollivierre-Wilson H, Grinberg A, Love P, Rouault TA (2004) Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J 23(2):386–395

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wallander ML, Leibold EA, Eisenstein RS (2006) Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim Biophys Acta 1763(7):668–689

    CAS  PubMed  PubMed Central  Google Scholar 

  47. LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M, Switzer R 3rd, Grinberg A, Love P, Tresser N, Rouault TA (2001) Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 27(2):209–214

    CAS  PubMed  Google Scholar 

  48. Zumbrennen-Bullough KB, Becker L, Garrett L, Holter SM, Calzada-Wack J, Mossbrugger I, Quintanilla-Fend L, Racz I, Rathkolb B, Klopstock T, Wurst W, Zimmer A, Wolf E, Fuchs H, Gailus-Durner V, de Angelis MH, Romney SJ, Leibold EA (2014) Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments. PLoS One 9(6):e98072

    PubMed  PubMed Central  Google Scholar 

  49. Ruiz JC, Walker SD, Anderson SA, Eisenstein RS, Bruick RK (2013) F-box and leucine-rich repeat protein 5 (FBXL5) is required for maintenance of cellular and systemic iron homeostasis. J Biol Chem 288(1):552–560

    CAS  PubMed  Google Scholar 

  50. Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012:1–13

    CAS  PubMed  Google Scholar 

  51. Hubert N, Hentze MW (2002) Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci U S A 99(19):12345–12350

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Koeller DM, Casey JL, Hentze MW, Gerhardt EM, Chan LN, Klausner RD, Harford JB (1989) A cytosolic protein binds to structural elements within the iron regulatory region of the transferrin receptor mRNA. Proc Natl Acad Sci U S A 86(10):3574–3578

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mullner EW, Neupert B, Kuhn LC (1989) A specific mRNA binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA. Cell 58(2):373–382

    CAS  PubMed  Google Scholar 

  54. Meynard D, Babitt JL, Lin HY (2014) The liver: conductor of systemic iron balance. Blood 123(2):168–176

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276(11):7806–7810

    CAS  PubMed  Google Scholar 

  56. Wang SM, Fu LJ, Duan XL, Crooks DR, Yu P, Qian ZM, Di XJ, Li J, Rouault TA, Chang YZ (2010) Role of hepcidin in murine brain iron metabolism. Cell Mol Life Sci 67(1):123–133

    CAS  PubMed  Google Scholar 

  57. Zhou YF, Zhang C, Yang G, Qian ZM, Zhang MW, Ma J, Zhang FL, Ke Y (2017) Hepcidin Protects Neuron from Hemin-Mediated Injury by Reducing Iron Frontiers In Physiology:8

  58. Xiong XY, Liu L, Wang FX, Yang YR, Hao JW, Wang PF, Zhong Q, Zhou K, Xiong A, Zhu WY, Zhao T, Meng ZY, Wang YC, Gong QW, Liao MF, Wang J, Yang QW (2016) Toll-like receptor 4/MyD88-mediated signaling of hepcidin expression causing brain iron accumulation, oxidative injury, and cognitive impairment after intracerebral hemorrhage. Circulation 134(14):1025–1038

    CAS  PubMed  Google Scholar 

  59. Zhang H, Wang P, Yu H, Yu K, Cao Z, Xu F, Yang X, Song M, Li Y (2018) Aluminum trichloride-induced hippocampal inflammatory lesions are associated with IL-1beta-activated IL-1 signaling pathway in developing rats. Chemosphere 203:170–178

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by a grant from The National Natural Science Foundation of China (31872530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Li.

Ethics declarations

Conflicts of interest.

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Huang, W., Xu, F. et al. Iron Dyshomeostasis Participated in Rat Hippocampus Toxicity Caused by Aluminum Chloride. Biol Trace Elem Res 197, 580–590 (2020). https://doi.org/10.1007/s12011-019-02008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-02008-7

Keywords

Navigation