Skip to main content
Log in

Sodium Para-aminosalicylic Acid Reverses Changes of Glutamate Turnover in Manganese-Exposed Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Sodium para-aminosalicylic acid (PAS-Na) has been used to treat patients with manganism, a neurological disease caused by manganese (Mn) toxicity, although the exact molecular mechanisms are yet unclear. The present study aims to investigate the effect of PAS-Na on glutamate (Glu) turnover of Mn-exposed rats. The results showed that Mn concentrations in the hippocampus, thalamus, striatum, and globus pallidus were increased in Mn-exposed rats. Moreover, the results also demonstrated that subacute Mn exposure (15 mg/kg for 4 weeks) interrupted the homeostasis of Glu by increasing Glu levels but decreasing glutamine (Gln) levels in the hippocampus, thalamus, striatum, and globus pallidus in male Sprague-Dawley rats. These effects lasted even after Mn exposure had been ceased for a period of 6 weeks. Meanwhile the main Glu turnover enzymes [Gln synthetase (GS) and phosphate-activated glutaminase (PAG)] and transporters [Glu/aspartate transporter (GLAST) and Glu transporter-1 (GLT-1)] were also affected by Mn treatment. Additionally, PAS-Na treatment recovered the aforementioned changes induced by Mn. Taken together, these results indicate that Glu turnover might be involved in Mn-induced neurotoxicity. PAS-Na treatment could promote Mn excretions and recover the changes in Glu turnover induced by Mn, and a prolonged PAS-Na treatment may be more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M (2015) Manganese is essential for neuronal health. Annu Rev Nutr 35:71–108

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Karki P, Lee E, Aschner M (2013) Manganese neurotoxicity: a focus on glutamate transporters. Ann Occup Environ Med 25(1):4

    PubMed  PubMed Central  Google Scholar 

  3. Peres TV, Schettinger MR, Chen P et al (2016) Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 17(1):57

    PubMed  PubMed Central  Google Scholar 

  4. Garcia-Chimalpopoca Z, Hernandez-Bonilla D, Cortez-Lugo M et al (2019) Verbal memory and learning in schoolchildren exposed to manganese in Mexico. Neurotox Res

  5. Iyare PU (2019) The effects of manganese exposure from drinking water on school-age children: a systematic review. Neurotoxicology 73:1–7

    CAS  PubMed  Google Scholar 

  6. Lee EY, Flynn MR, Lewis MM, Mailman RB, Huang X (2018) Welding-related brain and functional changes in welders with chronic and low-level exposure. Neurotoxicology 64:50–59

    CAS  PubMed  Google Scholar 

  7. Pajarillo E, Rizor A, Lee J et al (2019) The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology:107559

  8. Kwakye GF, Paoliello MM, Mukhopadhyay S, Bowman AB, Aschner M (2015) Manganese-induced parkinsonism and Parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health 12(7):7519–7540

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee EY, Lewis MM, Mailman RB et al (2017) Distinct neuroimaging features define Parkinson’s disease and welding-related neurotoxicity. Neurologist (Hyderabad) 1(1)

  10. Fernsebner K, Zorn J, Kanawati B, Walker A, Michalke B (2014) Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(II)/(III) in rat brain tissue. Metallomics 6(4):921–931

    CAS  PubMed  Google Scholar 

  11. Dorman DC, Struve MF, Wong BA et al (2006) Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation. Toxicol Sci 92(1):219–227

    CAS  PubMed  Google Scholar 

  12. Centonze D, Gubellini P, Bernardi G et al (2001) Impaired excitatory transmission in the striatum of rats chronically intoxicated with manganese. Exp Neurol 172(2):469–476

    CAS  PubMed  Google Scholar 

  13. Struve MF, McManus BE, Wong BA, Dorman DC (2007) Basal ganglia neurotransmitter concentrations in rhesus monkeys following subchronic manganese sulfate inhalation. Am J Ind Med 50(10):772–778

    CAS  PubMed  Google Scholar 

  14. Long Z, Jiang YM, Li XR, Fadel W, Xu J, Yeh CL, Long LL, Luo HL, Harezlak J, Murdoch JB, Zheng W, Dydak U (2014) Vulnerability of welders to manganese exposure – a neuroimaging study. Neurotoxicology 45:285–292

    CAS  PubMed  Google Scholar 

  15. Lee EY, Flynn MR, Du G et al (2015) T1 relaxation rate (R1) indicates nonlinear Mn accumulation in brain tissue of welders with low-level exposure. Toxicol Sci 146(2):281–289

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee E, Karki P, Johnson J Jr et al (2017) Manganese control of glutamate transporters’ gene expression. Adv Neurobiol 16:1–12

    PubMed  PubMed Central  Google Scholar 

  17. Leke R, Schousboe A (2016) The glutamine transporters and their role in the glutamate/GABA-glutamine cycle. Adv Neurobiol 13:223–257

    PubMed  Google Scholar 

  18. Albrecht J, Sidoryk-Wegrzynowicz M, Zielinska M et al (2010) Roles of glutamine in neurotransmission. Neuron Glia Biol 6(4):263–276

    PubMed  Google Scholar 

  19. Gorovits R, Avidan N, Avisar N et al (1997) Glutamine synthetase protects against neuronal degeneration in injured retinal tissue. Proc Natl Acad Sci U S A 94(13):7024–7029

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Karki P, Smith K, Johnson J Jr et al (2015) Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: putative mechanism for manganese-induced neurotoxicity. Neurochem Int 88:53–59

    CAS  PubMed  Google Scholar 

  21. Deng Y, Xu Z, Xu B et al (2012) The protective effects of riluzole on manganese-induced disruption of glutamate transporters and glutamine synthetase in the cultured astrocytes. Biol Trace Elem Res 148(2):242–249

    CAS  PubMed  Google Scholar 

  22. Erikson KM, Dorman DC, Fitsanakis V, Lash LH, Aschner M (2006) Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese. Biol Trace Elem Res 111(1–3):199–215

    CAS  PubMed  Google Scholar 

  23. Sidoryk-Wegrzynowicz M, Lee ES, Ni M et al (2010) Manganese-induced downregulation of astroglial glutamine transporter SNAT3 involves ubiquitin-mediated proteolytic system. Glia 58(16):1905–1912

    PubMed  Google Scholar 

  24. Erikson KM, Aschner M (2003) Manganese neurotoxicity and glutamate-GABA interaction. Neurochem Int 43(4–5):475–480

    CAS  PubMed  Google Scholar 

  25. Jiang YM, Mo XA, Du FQ et al (2006) Effective treatment of manganese-induced occupational parkinsonism with p-aminosalicylic acid: a case of 17-year follow-up study. J Occup Environ Med 48(6):644–649

    PubMed  PubMed Central  Google Scholar 

  26. Zheng W, Jiang YM, Zhang Y, Jiang W, Wang X, Cowan DM (2009) Chelation therapy of manganese intoxication with para-aminosalicylic acid (PAS) in Sprague-Dawley rats. Neurotoxicology 30(2):240–248

    CAS  PubMed  Google Scholar 

  27. Santos AP, Lucas RL, Andrade V, Mateus ML, Milatovic D, Aschner M, Batoreu MC (2012) Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity. Toxicol Appl Pharmacol 258(3):394–402

    PubMed  Google Scholar 

  28. Yoon H, Kim DS, Lee GH, Kim JY, Kim DH, Kim KW, Chae SW, You WH, Lee YC, Park SJ, Kim HR, Chae HJ (2009) Protective effects of sodium para-amino salicylate on manganese-induced neuronal death: the involvement of reactive oxygen species. J Pharm Pharmacol 61(11):1563–1569

    CAS  PubMed  Google Scholar 

  29. Wang F, Wang C, Jiang Y et al (2014) Protective role of sodium para-amino salicylic acid against manganese-induced hippocampal neurons damage. Environ Toxicol Pharmacol 37(3):1071–1078

    CAS  PubMed  Google Scholar 

  30. Santos D, Batoreu MC, Aschner M, Marreilha dos Santos A (2013) Comparison between 5-aminosalicylic acid (5-ASA) and para-aminosalicylic acid (4-PAS) as potential protectors against Mn-induced neurotoxicity. Biol Trace Elem Res 152(1):113–116

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li SJ, Luo YN, Li Y, Chen JW, Mo YH, Yuan ZX, Ou SY, Ou CY, Jiang YM, Deng XF (2016) Sodium para-aminosalicylate protected cultured basal ganglia astrocytes from manganese-induced DNA damages and alteration of amino acid neurotransmitter levels. J Toxicol Sci 41(5):573–581

    CAS  PubMed  Google Scholar 

  32. Li SJ, Li Y, Chen JW, Yuan ZX, Mo YH, Lu GD, Jiang YM, Ou CY, Wang F, Huang XW, Luo YN, Ou SY, Huang YN (2016) Sodium para-aminosalicylic acid protected primary cultured basal ganglia neurons of rat from manganese-induced oxidative impairment and changes of amino acid neurotransmitters. Biol Trace Elem Res 170(2):357–365

    CAS  PubMed  Google Scholar 

  33. Yuan ZX, Chen HB, Li SJ, Huang XW, Mo YH, Luo YN, He SN, Deng XF, Lu GD, Jiang YM (2016) The influence of manganese treatment on the distribution of metal elements in rats and the protection by sodium para-amino salicylic acid. J Trace Elem Med Biol 36:84–89

    PubMed  Google Scholar 

  34. Lee E, Sidoryk-Wegrzynowicz M, Yin Z, Webb A, Son DS, Aschner M (2012) Transforming growth factor-alpha mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia 60(7):1024–1036

    PubMed  PubMed Central  Google Scholar 

  35. Ommati MM, Heidari R, Ghanbarinejad V et al (2019) Taurine treatment provides neuroprotection in a mouse model of manganism. Biol Trace Elem Res 190(2):384–395

    CAS  PubMed  Google Scholar 

  36. Bowler RM, Kornblith ES, Gocheva VV, Colledge MA, Bollweg G, Kim Y, Beseler CL, Wright CW, Adams SW, Lobdell DT (2015) Environmental exposure to manganese in air: associations with cognitive functions. Neurotoxicology 49:139–148

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Roels HA, Bowler RM, Kim Y, Claus Henn B, Mergler D, Hoet P, Gocheva VV, Bellinger DC, Wright RO, Harris MG, Chang Y, Bouchard MF, Riojas-Rodriguez H, Menezes-Filho JA, Téllez-Rojo MM (2012) Manganese exposure and cognitive deficits: a growing concern for manganese neurotoxicity. Neurotoxicology 33(4):872–880

    CAS  PubMed  Google Scholar 

  38. Al-Lozi A, Nielsen SS, Hershey T et al (2017) Cognitive control dysfunction in workers exposed to manganese-containing welding fume. Am J Ind Med 60(2):181–188

    CAS  PubMed  Google Scholar 

  39. Rahman SM, Kippler M, Tofail F et al (2017) Manganese in drinking water and cognitive abilities and behavior at 10 years of age: a prospective cohort study. Environ Health Perspect 125(5):057003

    PubMed  PubMed Central  Google Scholar 

  40. Tandon SK, Singh J (1975) Removal of manganese by chelating agents from brain and liver of manganese treated rats: as in vitro and an in vivo study. Toxicology 5(2):237–241

    CAS  PubMed  Google Scholar 

  41. Hong L, Jiang W, Pan H, Jiang Y, Zeng S, Zheng W (2011) Brain regional pharmacokinetics of p-aminosalicylic acid and its N-acetylated metabolite: effectiveness in chelating brain manganese. Drug Metab Dispos 39(10):1904–1909

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li SJ, Qin WX, Peng DJ, Yuan ZX, He SN, Luo YN, Aschner M, Jiang YM, Liang DY, Xie BY, Xu F (2018) Sodium p-aminosalicylic acid inhibits sub-chronic manganese-induced neuroinflammation in rats by modulating MAPK and COX-2. Neurotoxicology 64:219–229

    CAS  PubMed  Google Scholar 

  43. Xu B, Xu ZF, Deng Y (2010) Protective effects of MK-801 on manganese-induced glutamate metabolism disorder in rat striatum. Exp Toxicol Pathol 62(4):381–390

    CAS  PubMed  Google Scholar 

  44. Crooks DR, Welch N, Smith DR (2007) Low-level manganese exposure alters glutamate metabolism in GABAergic AF5 cells. Neurotoxicology 28(3):548–554

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu B, Xu ZF, Deng Y (2010) Manganese exposure alters the expression of N-methyl-D-aspartate receptor subunit mRNAs and proteins in rat striatum. J Biochem Mol Toxicol 24(1):1–9

    PubMed  Google Scholar 

  46. Deng Y, Xu Z, Xu B et al (2009) The protective effect of riluzole on manganese caused disruption of glutamate-glutamine cycle in rats. Brain Res 1289:106–117

    CAS  PubMed  Google Scholar 

  47. Karki P, Kim C, Smith K, Son DS, Aschner M, Lee E (2015) Transcriptional regulation of the astrocytic excitatory amino acid transporter 1 (EAAT1) via NF-kappaB and Yin Yang 1 (YY1). J Biol Chem 290(39):23725–23737

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pajarillo E, Johnson J Jr, Kim J et al (2018) 17beta-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity. Neurotoxicology 65:280–288

    CAS  PubMed  Google Scholar 

  49. Johnson J Jr, Pajarillo E, Karki P et al (2018) Valproic acid attenuates manganese-induced reduction in expression of GLT-1 and GLAST with concomitant changes in murine dopaminergic neurotoxicity. Neurotoxicology 67:112–120

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Erikson KM, Dorman DC, Lash LH, Aschner M (2007) Manganese inhalation by rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Toxicol Sci 97(2):459–466

    CAS  PubMed  Google Scholar 

  51. Erikson KM, Dorman DC, Lash LH, Aschner M (2008) Duration of airborne-manganese exposure in rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Neurotoxicology 29(3):377–385

    CAS  PubMed  Google Scholar 

  52. Su ZZ, Leszczyniecka M, Kang DC, Sarkar D, Chao W, Volsky DJ, Fisher PB (2003) Insights into glutamate transport regulation in human astrocytes: cloning of the promoter for excitatory amino acid transporter 2 (EAAT2). Proc Natl Acad Sci U S A 100(4):1955–1960

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zelenaia O, Schlag BD, Gochenauer GE, Ganel R, Song W, Beesley JS, Grinspan JB, Rothstein JD, Robinson MB (2000) Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB. Mol Pharmacol 57(4):667–678

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Richard B. Mailman from Pennsylvania State University-Penn State Health Milton S. Hershey Medical Center for his useful suggestions. The authors thank Prof. Guo-Dong Lu from Guangxi Medical University and Dr. Leslie Jellen from Pennsylvania State University-Penn State Health Milton S. Hershey Medical Center for their revision of the manuscript for grammar, style, and syntax.

Funding

This study was funded by grants from the National Natural Science Foundation of China (NSFC 81460505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Ming Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZC., Wang, F., Li, SJ. et al. Sodium Para-aminosalicylic Acid Reverses Changes of Glutamate Turnover in Manganese-Exposed Rats. Biol Trace Elem Res 197, 544–554 (2020). https://doi.org/10.1007/s12011-019-02001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-02001-0

Keywords

Navigation