Skip to main content
Log in

Association Between Copper, Zinc, Iron, and Selenium Intakes and TC/HDL-C Ratio in US Adults

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The trace minerals zinc, copper, iron, and selenium are essential micronutrients, and because of their antioxidant activity, they are hypothesized to improve cardiovascular health. However, their associations with different risk levels for cardiovascular diseases are less clear. Data from the National Health and Nutrition Examination Survey 2007–2014 were used. In this study, the ratio of total cholesterol to high-density lipoprotein cholesterol (TC/HDL-C) was used as a risk marker for cardiovascular disease, and a ratio ≥ 5 was considered to indicate high risk. A total of 7597 adults (3673 men and 3924 women) were included, and 15.9% of the participants had a high risk of cardiovascular disease. Using quantile regression analysis, we found the negative correlation between zinc, copper, iron, and selenium intakes and TC/HDL-C. The effects of copper and zinc were enhanced with increasing quantiles of risk levels. In addition, the difference in the associations of the trace minerals was sex-dependent. The correlation between iron and cardiovascular risk in males was stronger than those in females, while that of copper was weaker than that in females. Moreover, a significant nonlinear relationship between selenium and the TC/HDL-C ratio was only found in females, and this relationship was U-shaped. Our findings suggest that among healthy adults in the US, zinc, copper, iron, and selenium intakes are inversely associated with cardiovascular disease risk, and the effect is enhanced with increasing quantiles of risk levels, with magnitudes differing by sex. Therefore, trace minerals may have the ability to prevent cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Figure 1 contains text below the minimum required font size of 6pts inside the artwork, and there is no sufficient space available for the text to be enlarged. Please provide replacement figure file.We have sent the correction figure by email.
Fig. 2

Similar content being viewed by others

References

  1. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, Greenlund K, Daniels S, Nichol G, Tomaselli GF, Arnett DK, Fonarow GC, Ho PM, Lauer MS, Masoudi FA, Robertson RM, Roger V, Schwamm LH, Sorlie P, Yancy CW, Rosamond WD (2010) Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic impact goal through 2020 and beyond. Circulation 121(4):586–613. https://doi.org/10.1161/circulationaha.109.192703

    Article  PubMed  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, DK MG, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133(4):e38–e360. https://doi.org/10.1161/cir.0000000000000350

    Article  PubMed  Google Scholar 

  3. Di Angelantonio E, Gao P, Pennells L, Kaptoge S, Caslake M, Thompson A, Butterworth AS, Sarwar N, Wormser D, Saleheen D, Ballantyne CM, Psaty BM, Sundstrom J, Ridker PM, Nagel D, Gillum RF, Ford I, Ducimetiere P, Kiechl S, Koenig W, Dullaart RP, Assmann G, D’Agostino RB Sr, Dagenais GR, Cooper JA, Kromhout D, Onat A, Tipping RW, Gomez-de-la-Camara A, Rosengren A, Sutherland SE, Gallacher J, Fowkes FG, Casiglia E, Hofman A, Salomaa V, Barrett-Connor E, Clarke R, Brunner E, Jukema JW, Simons LA, Sandhu M, Wareham NJ, Khaw KT, Kauhanen J, Salonen JT, Howard WJ, Nordestgaard BG, Wood AM, Thompson SG, Boekholdt SM, Sattar N, Packard C, Gudnason V, Danesh J (2012) Lipid-related markers and cardiovascular disease prediction. Jama 307(23):2499–2506. https://doi.org/10.1001/jama.2012.6571

    Article  PubMed  Google Scholar 

  4. Pikula A, Beiser AS, Wang J, Himali JJ, Kelly-Hayes M, Kase CS, Yang Q, Seshadri S, Wolf PA (2015) Lipid and lipoprotein measurements and the risk of ischemic vascular events: Framingham study. Neurology 84(5):472–479. https://doi.org/10.1212/wnl.0000000000001202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elshazly MB, Quispe R, Michos ED, Sniderman AD, Toth PP, Banach M, Kulkarni KR, Coresh J, Blumenthal RS, Jones SR, Martin SS (2015) Patient-level discordance in population percentiles of the total cholesterol to high-density lipoprotein cholesterol ratio in comparison with low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol: the very large database of lipids study (VLDL-2B). Circulation 132(8):667–676. https://doi.org/10.1161/circulationaha.115.016163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Katsiki N, Mikhailidis DP, Mantzoros CS (2016) Non-alcoholic fatty liver disease and dyslipidemia: An update. Metab Clin Exp 65(8):1109–1123. https://doi.org/10.1016/j.metabol.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  7. Hannan PA, Khan JA, Ullah I, Ullah S (2016) Synergistic combinatorial antihyperlipidemic study of selected natural antioxidants; modulatory effects on lipid profile and endogenous antioxidants. Lipids Health Dis 15:151. https://doi.org/10.1186/s12944-016-0323-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Munzel T, Gori T, Bruno RM, Taddei S (2010) Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 31(22):2741–2748. https://doi.org/10.1093/eurheartj/ehq396

    Article  CAS  PubMed  Google Scholar 

  9. Vona R, Gambardella L (2019) Biomarkers of oxidative stress in metabolic syndrome and associated diseases.. 2019:8267234. https://doi.org/10.1155/2019/8267234

  10. Gregorio BM, De Souza DB, de Morais Nascimento FA, Pereira LM, Fernandes-Santos C (2016) The potential role of antioxidants in metabolic syndrome. Curr Pharm Des 22(7):859–869. https://doi.org/10.2174/1381612822666151209152352

    Article  CAS  PubMed  Google Scholar 

  11. Spahis S, Borys JM, Levy E (2017) Metabolic syndrome as a multifaceted risk factor for oxidative stress. Antioxid Redox Signal 26(9):445–461. https://doi.org/10.1089/ars.2016.6756

    Article  CAS  PubMed  Google Scholar 

  12. Yang Q, Cogswell ME, Flanders WD, Hong Y, Zhang Z, Loustalot F, Gillespie C, Merritt R, Hu FB (2012) Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. Jama 307(12):1273–1283. https://doi.org/10.1001/jama.2012.339

    Article  CAS  PubMed  Google Scholar 

  13. Artinian NT, Fletcher GF, Mozaffarian D, Kris-Etherton P, Van Horn L, Lichtenstein AH, Kumanyika S, Kraus WE, Fleg JL, Redeker NS, Meininger JC, Banks J, Stuart-Shor EM, Fletcher BJ, Miller TD, Hughes S, Braun LT, Kopin LA, Berra K, Hayman LL, Ewing LJ, Ades PA, Durstine JL, Houston-Miller N, Burke LE (2010) Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults: a scientific statement from the American Heart Association. Circulation 122(4):406–441. https://doi.org/10.1161/CIR.0b013e3181e8edf1

    Article  PubMed  PubMed Central  Google Scholar 

  14. O’Keefe JH, Gheewala NM, O’Keefe JO (2008) Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll Cardiol 51(3):249–255. https://doi.org/10.1016/j.jacc.2007.10.016

    Article  CAS  PubMed  Google Scholar 

  15. Olechnowicz J, Tinkov A, Skalny A, Suliburska J (2018) Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. 68(1):19–31. https://doi.org/10.1007/s12576-017-0571-7

  16. Choi S, Liu X, Pan Z (2018) Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin 39(7):1120–1132. https://doi.org/10.1038/aps.2018.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Foster M, Samman S (2010) Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal 13(10):1549–1573. https://doi.org/10.1089/ars.2010.3111

    Article  CAS  PubMed  Google Scholar 

  18. Ranasinghe P, Wathurapatha WS, Ishara MH, Jayawardana R, Galappatthy P, Katulanda P, Constantine GR (2015) Effects of zinc supplementation on serum lipids: a systematic review and meta-analysis. Nutr Metab 12:26. https://doi.org/10.1186/s12986-015-0023-4

    Article  CAS  Google Scholar 

  19. Saari JT (2000) Copper deficiency and cardiovascular disease: role of peroxidation, glycation, and nitration. Can J Physiol Pharmacol 78(10):848–855. https://doi.org/10.1139/cjpp-78-10-848

    Article  CAS  PubMed  Google Scholar 

  20. Crapo JD, Oury T, Rabouille C, Slot JW, Chang LY (1992) Copper,zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci U S A 89(21):10405–10409. https://doi.org/10.1073/pnas.89.21.10405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davis CD, Milne DB, Nielsen FH (2000) Changes in dietary zinc and copper affect zinc-status indicators of postmenopausal women, notably, extracellular superoxide dismutase and amyloid precursor proteins. Am J Clin Nutr 71(3):781–788. https://doi.org/10.1093/ajcn/71.3.781

    Article  CAS  PubMed  Google Scholar 

  22. Olin KL, Golub MS, Gershwin ME, Hendrickx AG, Lonnerdal B, Keen CL (1995) Extracellular superoxide dismutase activity is affected by dietary zinc intake in nonhuman primate and rodent models. Am J Clin Nutr 61(6):1263–1267. https://doi.org/10.1093/ajcn/61.6.1263

    Article  CAS  PubMed  Google Scholar 

  23. Paik HY, Joung H, Lee JY, Lee HK, King JC, Keen CL (1999) Serum extracellular superoxide dismutase activity as an indicator of zinc status in humans. Biol Trace Elem Res 69(1):45–57. https://doi.org/10.1007/bf02783914

    Article  CAS  PubMed  Google Scholar 

  24. Klevay LM (1983) Copper and ischemic heart disease. Biol Trace Elem Res 5(4-5):245–255. https://doi.org/10.1007/bf02987211

    Article  CAS  PubMed  Google Scholar 

  25. Sandstead HH (1995) Requirements and toxicity of essential trace elements, illustrated by zinc and copper. Am J Clin Nutr 61(3 Suppl):621s–624s. https://doi.org/10.1093/ajcn/61.3.621S

    Article  CAS  PubMed  Google Scholar 

  26. Kurtoglu E, Ugur A, Baltaci AK, Undar L (2003) Effect of iron supplementation on oxidative stress and antioxidant status in iron-deficiency anemia. Biol Trace Elem Res 96(1-3):117–123. https://doi.org/10.1385/bter:96:1-3:117

    Article  CAS  PubMed  Google Scholar 

  27. Sarnak MJ, Tighiouart H, Manjunath G, MacLeod B, Griffith J, Salem D, Levey AS (2002) Anemia as a risk factor for cardiovascular disease in the atherosclerosis risk in communities (ARIC) study. J Am Coll Cardiol 40(1):27–33. https://doi.org/10.1016/s0735-1097(02)01938-1

    Article  PubMed  Google Scholar 

  28. Merono T, Dauteuille C, Tetzlaff W, Martin M, Botta E, Lhomme M, Saez MS, Sorroche P, Boero L, Arbelbide J, Chapman MJ, Kontush A, Brites F (2017) Oxidative stress, HDL functionality and effects of intravenous iron administration in women with iron deficiency anemia. Clin Nutr 36(2):552–558. https://doi.org/10.1016/j.clnu.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  29. Christensen K, Werner M, Malecki K (2015) Serum selenium and lipid levels: associations observed in the National Health and Nutrition Examination Survey (NHANES) 2011-2012. Environ Res 140:76–84. https://doi.org/10.1016/j.envres.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  30. Stranges S, Marshall JR, Trevisan M, Natarajan R, Donahue RP, Combs GF, Farinaro E, Clark LC, Reid ME (2006) Effects of selenium supplementation on cardiovascular disease incidence and mortality: secondary analyses in a randomized clinical trial. Am J Epidemiol 163(8):694–699. https://doi.org/10.1093/aje/kwj097

    Article  PubMed  Google Scholar 

  31. Flores-Mateo G, Navas-Acien A, Pastor-Barriuso R, Guallar E (2006) Selenium and coronary heart disease: a meta-analysis. Am J Clin Nutr 84(4):762–773. https://doi.org/10.1093/ajcn/84.4.762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bleys J, Navas-Acien A, Stranges S, Menke A, Miller ER 3rd, Guallar E (2008) Serum selenium and serum lipids in US adults. Am J Clin Nutr 88(2):416–423. https://doi.org/10.1093/ajcn/88.2.416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. (2002) Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106(25):3143–3421

  34. Foster M, Petocz P, Samman S (2010) Effects of zinc on plasma lipoprotein cholesterol concentrations in humans: a meta-analysis of randomised controlled trials. Atherosclerosis 210(2):344–352. https://doi.org/10.1016/j.atherosclerosis.2009.11.038

    Article  CAS  PubMed  Google Scholar 

  35. Ripa S, Ripa R (1994) Zinc and atherosclerosis. Minerva Med 85(12):647–654

    CAS  PubMed  Google Scholar 

  36. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51(2):225–227. https://doi.org/10.1093/ajcn/51.2.225

    Article  CAS  PubMed  Google Scholar 

  37. Briel M, Ferreira-Gonzalez I, You JJ, Karanicolas PJ, Akl EA, Wu P, Blechacz B, Bassler D, Wei X, Sharman A, Whitt I, Alves da Silva S, Khalid Z, Nordmann AJ, Zhou Q, Walter SD, Vale N, Bhatnagar N, O’Regan C, Mills EJ, Bucher HC, Montori VM, Guyatt GH (2009) Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ 338:b92. https://doi.org/10.1136/bmj.b92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gunasekara P, Hettiarachchi M, Liyanage C, Lekamwasam S (2011) Effects of zinc and multimineral vitamin supplementation on glycemic and lipid control in adult diabetes. Diabetes Metab Syndr Obes 4:53–60. https://doi.org/10.2147/dmso.s16691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh N, Yadav KK, Rajasekharan R (2017) Effect of zinc deprivation on the lipid metabolism of budding yeast. Curr Genet 63(6):977–982. https://doi.org/10.1007/s00294-017-0704-9

    Article  CAS  PubMed  Google Scholar 

  40. Bugel S, Harper A, Rock E, O’Connor JM, Bonham MP, Strain JJ (2005) Effect of copper supplementation on indices of copper status and certain CVD risk markers in young healthy women. Br J Nutr 94(2):231–236. https://doi.org/10.1079/bjn20051470

    Article  CAS  PubMed  Google Scholar 

  41. Morrell A, Tallino S, Yu L, Burkhead JL (2017) The role of insufficient copper in lipid synthesis and fatty-liver disease. 69 (4):263-270. https://doi.org/10.1002/iub.1613

  42. Bo S, Durazzo M, Gambino R, Berutti C, Milanesio N, Caropreso A, Gentile L, Cassader M, Cavallo-Perin P, Pagano G (2008) Associations of dietary and serum copper with inflammation, oxidative stress, and metabolic variables in adults. J Nutr 138(2):305–310. https://doi.org/10.1093/jn/138.2.305

    Article  CAS  PubMed  Google Scholar 

  43. Ghayour-Mobarhan M, Shapouri-Moghaddam A, Azimi-Nezhad M, Esmaeili H, Parizadeh SM, Safarian M, Kazemi-Bajestani SM, Khodaei GH, Hosseini SJ, Parizadeh SM, Ferns GA (2009) The relationship between established coronary risk factors and serum copper and zinc concentrations in a large Persian cohort. J Trace Elem Med Biol 23(3):167–175. https://doi.org/10.1016/j.jtemb.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  44. Obara H, Tomite Y, Doi M (2008) Serum trace elements in tube-fed neurological dysphagia patients correlate with nutritional indices but do not correlate with trace element intakes: case of patients receiving enough trace elements intake. Clin Nutr 27(4):587–593. https://doi.org/10.1016/j.clnu.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  45. Tallino S, Duffy M, Ralle M, Cortes MP, Latorre M, Burkhead JL (2015) Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease. J Nutr Biochem 26(10):996–1006. https://doi.org/10.1016/j.jnutbio.2015.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arnaud J, de Lorgeril M, Akbaraly T, Salen P, Arnout J, Cappuccio FP, van Dongen MC, Donati MB, Krogh V, Siani A, Iacoviello L (2012) Gender differences in copper, zinc and selenium status in diabetic-free metabolic syndrome European population-the IMMIDIET study. Nutr Metab Cardiovasc Dis 22(6):517–524. https://doi.org/10.1016/j.numecd.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  47. Chonchol M, Nielson C (2008) Hemoglobin levels and coronary artery disease. Am Heart J 155(3):494–498. https://doi.org/10.1016/j.ahj.2007.10.031

    Article  CAS  PubMed  Google Scholar 

  48. Muzzarelli S, Pfisterer M (2006) Anemia as independent predictor of major events in elderly patients with chronic angina. Am Heart J 152(5):991–996. https://doi.org/10.1016/j.ahj.2006.06.014

    Article  PubMed  Google Scholar 

  49. Chaabane M, Tir M, Hamdi S, Boudawara O, Jamoussi K, Boudawara T, Ghorbel RE, Zeghal N, Soudani N (2016) Improvement of heart redox states contributes to the beneficial effects of selenium against penconazole-induced cardiotoxicity in adult rats. Biol Trace Elem Res 169(2):261–270. https://doi.org/10.1007/s12011-015-0426-0

    Article  CAS  PubMed  Google Scholar 

  50. Steinbrenner H, Bilgic E, Alili L, Sies H, Brenneisen P (2006) Selenoprotein P protects endothelial cells from oxidative damage by stimulation of glutathione peroxidase expression and activity. Free Radic Res 40(9):936–943. https://doi.org/10.1080/10715760600806248

    Article  CAS  PubMed  Google Scholar 

  51. Huang K, Liu H, Chen Z, Xu H (2002) Role of selenium in cytoprotection against cholesterol oxide-induced vascular damage in rats. Atherosclerosis 162(1):137–144. https://doi.org/10.1016/s0021-9150(01)00707-9

    Article  CAS  PubMed  Google Scholar 

  52. Brigelius-Flohe R, Banning A, Schnurr K (2003) Selenium-dependent enzymes in endothelial cell function. Antioxid Redox Signal 5(2):205–215. https://doi.org/10.1089/152308603764816569

    Article  CAS  PubMed  Google Scholar 

  53. Schomburg L (2007) Selene, the goddess of the moon: does she shine on men only? Eur Heart J 28(16):2043–2044. https://doi.org/10.1093/eurheartj/ehm238

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81973129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

NHANES is a publicly available data set and all participants in NHANES provide written informed consent, consistent with the approval by the National Center for Health Statistics Institutional Review Board.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Jiang, S., Yan, S. et al. Association Between Copper, Zinc, Iron, and Selenium Intakes and TC/HDL-C Ratio in US Adults. Biol Trace Elem Res 197, 43–51 (2020). https://doi.org/10.1007/s12011-019-01979-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01979-x

Keywords

Navigation