Skip to main content

Advertisement

Log in

Biogenic synthesis of silver nanoparticles using Gliocladium deliquescens and their application as household sponge disinfectant

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The topic of this investigation was to evaluate the microbial contamination of household sponges, biosynthesize of silver nanoparticles (Ag NPs) by Gliocladium deliquescens cell-free supernatant, and estimate the efficiency of Ag NPs as an acceptable disinfectant. The 23 factorial design was applied for the optimization of Ag NPs synthesis. Silver nitrate (AgNO3) concentration was the main positive impact on Ag NP biosynthesis. Various gamma irradiation doses were used in Ag NP production where the highest yield production was at 25.0 kGy. Ag NPs were characterized by UV–Vis. spectroscopy, The Fourier-transform infrared spectroscopy analysis (FTIR), dynamic light scattering (DLS), X-ray diffraction (XRD), and transmission electron microscope (TEM). Ag NPs were monodispersed spherical-shaped with 9.68 nm mean size. Two hundred sponge samples that were collected from different Egyptian household furniture and kitchens were highly contaminated by various contaminants including Salmonella spp., Staphylococcus spp., coliform bacteria, Gram-negative bacteria, yeasts, and molds. Ag NPs showed functional antimicrobial activity against all the microbial contaminants; Salmonella spp. was completely inhibited by Ag NP (50.0 μg/mL) treatment. The Ag NPs have the maximum inhibition zone against Salmonella spp. (14 mm) compared with the Staphylococcus spp. (12.3 mm). The minimum inhibitory concentration (MIC) of Ag NPs against Salmonella spp. and Staphylococcus spp. were 6.25 μg/ mL and 12.5 μg/ mL, respectively. The antibiofilm activity of Ag NPs was the highest at the concentration of 50.0 μg/mL recording 63.3 % for Salmonella spp. and 54.5 % for Staphylococcus spp. Ag NPs may find potent disinfectant applications for household purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guo J-Z, Cui H, Zhou W, Wang W (2008) Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J Photochem Photobiol 193(2-3):89–96

  2. Lansdown AB (2006) Silver in health care: antimicrobial effects and safety in use. In: Biofunctional textiles and the skin, vol 33. Karger Publishers, pp 17–34

  3. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453

  4. El-Batal AI, El-Sayyad GS, Mosallam FM, Fathy RM (2019) Penicillium chrysogenum-mediated mycogenic synthesis of copper oxide nanoparticles using gamma rays for in vitro antimicrobial activity against some plant pathogens. J Clust Sci:1–12

  5. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    CAS  PubMed  Google Scholar 

  6. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wright J, Lam K, Hansen D, Burrell R (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27(4):344–350

    CAS  PubMed  Google Scholar 

  8. Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M (2013) Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Public Health 10(10):5221–5238

    PubMed  PubMed Central  Google Scholar 

  9. Bonsak J, Mayandi J, Thøgersen A, Stensrud Marstein E, Mahalingam U (2011) Chemical synthesis of silver nanoparticles for solar cell applications. Phys Status Solidi 8(3):924–927

  10. Zhang G, Liu Y, Gao X, Chen Y (2014) Synthesis of silver nanoparticles and antibacterial property of silk fabrics treated by silver nanoparticles. Nanoscale Res Lett 9(1):216

    PubMed  PubMed Central  Google Scholar 

  11. Ismail A-WA, Sidkey NM, Arafa RA, Fathy RM, El-Batal AI (2016) Evaluation of in vitro antifungal activity of silver and selenium nanoparticles against Alternaria solani caused early blight disease on potato. Br Biotechnol J 12(3):1

    Google Scholar 

  12. Cho I-H, Ku S (2017) Current technical approaches for the early detection of foodborne pathogens: Challenges and opportunities. Int J Mol Sci 18(10):2078

    PubMed Central  Google Scholar 

  13. Cinti S, Volpe G, Piermarini S, Delibato E, Palleschi G (2017) Electrochemical biosensors for rapid detection of foodborne Salmonella: A critical overview. Sensors 17(8):1910

    PubMed Central  Google Scholar 

  14. El-Batal A, El-Baz A, Abo Mosalam F, Tayel A (2013) Gamma irradiation induces silver nanoparticles synthesis by Monascus purpureus. J Chem Pharm Res 5(8):1–15

    Google Scholar 

  15. El-Batal AI, El-Sayyad GS, El-Ghamery A, Gobara M (2017) Response surface methodology optimization of melanin production by Streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. J Clust Sci 28(3):1083–1112

    CAS  Google Scholar 

  16. Liao S, Zhang Y, Pan X, Zhu F, Jiang C, Liu Q, Cheng Z, Dai G, Wu G, Wang L (2019) Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomedicine 14:1469

    CAS  PubMed  PubMed Central  Google Scholar 

  17. El-Batal AI, Sidkey NM, Ismail A, Arafa RA, Fathy RM (2016) Impact of silver and selenium nanoparticles synthesized by gamma irradiation and their physiological response on early blight disease of potato. J Chem Pharm Res 8(4):934–951

    CAS  Google Scholar 

  18. Golińska P, Wypij M, Rathod D, Tikar S, Dahm H, Rai M (2016) Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. J Basic Microbiol 56(5):541–556

    PubMed  Google Scholar 

  19. Josephson K, Rubino J, Pepper I (1997) Characterization and quantification of bacterial pathogens and indicator organisms inhousehold kitchens with and without the use of a disinfectant cleaner. J Appl Microbiol 83(6):737–750

    CAS  PubMed  Google Scholar 

  20. Szita G, Gyetvai B, Szita J, Gyenes M, Solymos N, Soos L, Hajos A, Toth P, Bernáth S (2008) Synthetic culture media evaluated for the detection of coliform bacteria in milk, cheese and egg melange. Acta Vet Brno 77(1):143–147

  21. Stiles M (1977) Reliability of selective media for recovery of staphylococci from cheese. Journal of Food Protection 40(1):11–16

    CAS  PubMed  Google Scholar 

  22. Nesa M, Khan M, Alam M (2011) Isolation, identification and characterization of Salmonella serovars from diarrhoeic stool samples of human. Bangl J Vet Med 9(1):85–93

    Google Scholar 

  23. Horvath R, Ropp M (1974) Mechanism of action of eosin-methylene blue agar in the differentiation of Escherichia coli and Enterobacter aerogenes. Int J Syst Evol Microbiol 24(2):221–224

    CAS  Google Scholar 

  24. Lkhagvajav N, Koizhaiganova M, Yasa I, Çelik E, Sari Ö (2015) Characterization and antimicrobial performance of nano silver coatings on leather materials. Braz J Microbiol 46(1):41–48

    CAS  PubMed  PubMed Central  Google Scholar 

  25. El-Sayyad GS, Mosallam FM, El-Batal AI (2018) One-pot green synthesis of magnesium oxide nanoparticles using Penicillium chrysogenum melanin pigment and gamma rays with antimicrobial activity against multidrug-resistant microbes. Adv Powder Technol 29(11):2616–2625

    CAS  Google Scholar 

  26. Maiti S, Krishnan D, Barman G, Ghosh SK, Laha JK (2014) Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. Anal Sci Tech 5(1):40

  27. Maksoud MA, El-Sayyad GS, Ashour A, El-Batal AI, Elsayed MA, Gobara M, El-Khawaga AM, Abdel-Khalek E, El-Okr M (2019) Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb Pathog 127:144–158

  28. El-Nemr KF, Mohamed HR, Ali MA, Fathy RM, Dhmees AS (2019) Polyvinyl alcohol/gelatin irradiated blends filled by lignin as green filler for antimicrobial packaging materials. Int J Environ An Ch 1–25

  29. Puzey K, Gardner P, Petrova V, Donnelly C, Petrucci G (2008) Automated species and strain identification of bacteria in complex matrices using FTIR spectroscopy. In: Chemical, biological, radiological, nuclear, and explosives (CBRNE) sensing IX, vol 3. International Society for Optics and Photonics, pp 1–9

  30. Murtey MD, Ramasamy P (2016) Sample preparations for scanning electron microscopy–life sciences. Modern electron microscopy in physical and life sciences. M. Janecek. InTech, In

    Google Scholar 

  31. Kim H-Y (2014) Analysis of variance (ANOVA) comparing means of more than two groups. Restorative Dentistry & Endodontics 39(1):74–77

    Google Scholar 

  32. El-Batal AI, Mosallam FM, El-Sayyad GS (2018) Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes. J Clust Sci 29(6):1003–1015

    CAS  Google Scholar 

  33. Korbekandi H, Iravani S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J Chem Technol Biotechnol 87(7):932–937

    CAS  Google Scholar 

  34. Baraka A, Dickson S, Gobara M, El-Sayyad GS, Zorainy M, Awaad MI, Hatem H, Kotb MM, Tawfic A (2017) Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chem Pap 71(11):2271–2281

    CAS  Google Scholar 

  35. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanoparticle Res 10(3):507–517

    CAS  Google Scholar 

  36. Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM (2016) Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt J Aquat Res 42(3):301–312

  37. Mosallam FM, El-Sayyad GS, Fathy RM, El-Batal AI (2018) Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb pathog 4(11):1341–1363

    Google Scholar 

  38. Tulve NS, Stefaniak AB, Vance ME, Rogers K, Mwilu S, LeBouf RF, Schwegler-Berry D, Willis R, Thomas TA, Marr LC (2015) Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children’s potential exposures. Int J Hyg Environ Health 218(3):345–357

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mohammadian A, Shojaosadati S, Habibi Rezaee M (2007) Fusarium oxysporum mediates photogeneration of silver nanoparticles. Sci Iran 14(4):323–326

    CAS  Google Scholar 

  40. Chowdhury S, Yusof F, Faruck MO, Sulaiman N (2016) Process optimization of silver nanoparticle synthesis using response surface methodology. Procedia Eng 148:992–999

    CAS  Google Scholar 

  41. Le Caër S (2011) Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water 3(1):235–253

    Google Scholar 

  42. Madhukumar R, Byrappa K, Wang Y, Sangappa Y (2018) Effect of gamma irradiation on synthesis and characterization of bio-nanocomposite SF/Ag nanoparticles. Radiat Eff Defect S :1–7

  43. El-Batal A, Haroun BM, Farrag AA, Baraka A, El-Sayyad GS (2014) Synthesis of silver nanoparticles and incorporation with certain antibiotic using gamma irradiation. Br J Pharm Res 4(11):1341–1363

    Google Scholar 

  44. Ammar H, El-Desouky T (2016) Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J Appl Microbiol 121(1):89–100

    CAS  PubMed  Google Scholar 

  45. El-Baz AF, El-Batal AI, Abomosalam FM, Tayel AA, Shetaia YM, Yang ST (2016) Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. J Basic Microbiol 56(5):531–540

    CAS  PubMed  Google Scholar 

  46. Priyadarshini S, Gopinath V, Priyadharsshini NM, MubarakAli D, Velusamy P (2013) Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloid Surface B 102:232–237

  47. Kumar V, Yadav SC, Yadav SK (2010) Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Technol Biotechnol 85(10):1301–1309

    CAS  Google Scholar 

  48. Suresh AK, Pelletier DA, Wang W, Broich ML, Moon J-W, Gu B, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7(5):2148–2152

    CAS  PubMed  Google Scholar 

  49. Gudikandula K, Vadapally P, Charya MS (2017) Biogenic synthesis of silver nanoparticles from white rot fungi:Their characterization and antibacterial studies. OpenNano 2:64-78

  50. Adebayo-Tayo BC, Popoola AO, Ajunwa OM (2017) Bacterial synthesis of silver nanoparticles by culture free supernatant of lactic acid bacteria isolated from fermented food samples. Biotechnol J Int 19(1):1–13

    Google Scholar 

  51. Oza G, Pandey S, Shah R, Sharon M (2012) Extracellular fabrication of silver nanoparticles using Pseudomonas aeruginosa and its antimicrobial assay. Pelagia Res Lib Adv Appl Sci Res 3(3):1778–1783

    Google Scholar 

  52. Pulit-Prociak J, Banach M (2016) Silver nanoparticles–a material of the future …? Open Chem 14(1):76–91

    CAS  Google Scholar 

  53. Park H-J, Kim JY, Kim J, Lee J-H, Hahn J-S, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43(4):1027–1032

    CAS  PubMed  Google Scholar 

  54. Alaqad K, Saleh T (2016) Gold and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs. J Environ Anal Toxicol 6(384):2161–0525.1000384

    Google Scholar 

  55. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831

    PubMed  PubMed Central  Google Scholar 

  56. Morones JR, Frey W (2007) Environmentally sensitive silver nanoparticles of controlled size synthesized with PNIPAM as a nucleating and capping agent. Langmuir 23(15):8180–8186

    CAS  PubMed  Google Scholar 

  57. Buszewski B, Railean-Plugaru V, Pomastowski P, Rafinska K, Szultka-Mlynska M, Kowalkowski T (2017) Antimicrobial effectiveness of bioactive silver nanoparticles synthesized by Actinomycetes HGG16n Strain. Curr Pharm Biotechnol 18(2):168–176

    CAS  PubMed  Google Scholar 

  58. Peiris MK, Gunasekara CP, Jayaweera PM, Arachchi ND, Fernando N (2017) Biosynthesized silver nanoparticles: are they effective antimicrobials? Memórias do Instituto Oswaldo Cruz 112(8):537–543

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Romero-Urbina DG, Lara HH, Velázquez-Salazar JJ, Arellano-Jiménez MJ, Larios E, Srinivasan A, Lopez-Ribot JL, Yacamán MJ (2015) Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles. Beilstein J Nanotechnol 6:2396

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kawai S, Phan TA, Kono E, Harada K, Okai C, Fukusaki E, Murata K (2009) Transcriptional and metabolic response in yeast Saccharomyces cerevisiae cells during polyethylene glycol-dependent transformation. J Basic Microbiol 49(1):73–81

    CAS  PubMed  Google Scholar 

  61. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg infect dis 8(9):881–890

    PubMed  PubMed Central  Google Scholar 

  62. Iñiguez-Moreno M, Gutiérrez-Lomelí M, Guerrero-Medina PJ, Avila-Novoa MG (2018) Biofilm formation by Staphylococcus aureus and Salmonella spp. under mono and dual-species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite. Braz J Microbiol 49(2):310–319

    PubMed  Google Scholar 

  63. Janssens JC, Steenackers H, Robijns S, Gellens E, Levin J, Zhao H, Hermans K, De Coster D, Verhoeven TL, Marchal K (2008) Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 74(21):6639–6648

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Duarte A, Alves AC, Ferreira S, Silva F, Domingues FC (2015) Resveratrol inclusion complexes: antibacterial and anti-biofilm activity against Campylobacter spp. and Arcobacter butzleri. Food Res Int 77:244–250

    CAS  Google Scholar 

  65. O’toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–304

    PubMed  Google Scholar 

  66. Preisner O, Guiomar R, Machado J, Menezes JC, Lopes JA (2010) Application of Fourier transform infrared spectroscopy and chemometrics for differentiation of Salmonella enterica serovar Enteritidis phage types. Appl Environ Microbiol 76(11):3538–3544

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Filip Z, Hermann S, Demnerová K (2009) FT-IR spectroscopic characteristics of differently cultivated Escherichia coli. Czech J Food Sci 26(6):458–463

  68. Kamnev A, Antonyuk L, Tugarova A, Tarantilis P, Polissiou M, Gardiner P (2002) Fourier transform infrared spectroscopic characterisation of heavy metal-induced metabolic changes in the plant-associated soil bacterium Azospirillum brasilense Sp7. J Mol Struct 610(1-3):127–131

    CAS  Google Scholar 

  69. Mishra P, Tyagi S, Tripathi D (2019) Comparative evaluation of silver nanoparticles and 5.25% sodium hypochlorite for rapid chairside decontamination of artificially infected gutta-percha with Escherichia coli: an in vitro Study. Density Med Res 7:1–23

  70. Abdel-Rahman HA, Awad EH, Fathy RM (2019) Effect of modified nano zinc oxide on physico-chemical and antimicrobial properties of gamma-irradiated sawdust/epoxy composites. J Compos Mater. https://doi.org/10.1177/0021998319863835

  71. Kim, S. H., Lee, H. S., Ryu, D. S., Choi, S. J., and Lee, D. S. (2011) Antibacterial Activity of Silver-nanoparticles Against Staphylococcus aureus and Escherichia coliKorean J. Microbiol. Biotechnol. 39, 77–85.

Download references

Acknowledgments

The authors would like to thank P.I. Prof. Dr. Ahmed Ibrahim El-Batal, Drug Microbiology Lab, Drug Radiation Research Department, NCRRT, Cairo, Egypt, for supporting this study. Also, the authors thank greatly Dr. Gharieb Saied El-Sayyad for his valuable guidance during this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasha Mohammad Fathy.

Ethics declarations

Permissions were obtained for collection of samples from the responsible authorities of the household were indicated previously.

Conflict of Interest

The authors declare that they have no conflict of interest.

Research involving Human Participation and/or Animals

Not applicable.

Informed consent

Applicable.

Ethical approval

Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathy, R.M., Salem, M.S.Ed. & Mahfouz, A.Y. Biogenic synthesis of silver nanoparticles using Gliocladium deliquescens and their application as household sponge disinfectant. Biol Trace Elem Res 196, 662–678 (2020). https://doi.org/10.1007/s12011-019-01958-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01958-2

Keywords

Navigation