Skip to main content

Health Risk Assessment for Human Exposure to Trace Metals Via Bushmeat in Ghana

Abstract

Consumption and trade in bushmeat are entrenched in sub-Saharan Africa amid growing land degradation and environmental pollution that raise safety concerns, yet sustainability of bushmeat extraction and zoonoses considerations have been the focus of bushmeat research. Here, we evaluated the health risk of trace metals in the skeletal muscle, bone, liver, and skin of the black duiker (Cephalophus niger), brush-tailed porcupine (Atherurus africanus), bushbuck (Tragelaphus scriptus), cane rat (Thryonomys swinderianus), and Maxwell’s duiker (Cephalophus maxwelli) being the five most hunted and consumed species of bushmeat in Ghana. Sample tissues of the five species were analyzed for Cu, Zn, Se, Cd, As, Pb, and Hg. Targeted hazard quotient (THQ) of Se for black duiker, bushback, and Maxwell’s duiker as well as that of Pb for black duiker, Brush-tailed porcupine, and Maxwell’s duiker were concerning (> 1) for individuals foraging daily on bushmeat. Thus, cane rat was the only species that recorded both estimated daily intake (EDI) and THQ of Se and Pb within safe limits for daily consumption. In respect of Cu, Zn, Cd, As, and Hg, EDI and THQ values indicated no perceived risk to consumers for all five species. Lifetime cancer risk (CR) of As was negligible for all species. At the rate of bushmeat consumption in sub-Saharan Africa (0.104 kg per day), the cane rat was the only species considered safe for daily consumption among the five species.

This is a preview of subscription content, access via your institution.

References

  1. Bennett E, Eves H, Robinson JG, Wilkie D (2002) Why is eating bushmeat a biodiversity crisis? Conserv Pract 3:28–22

    Google Scholar 

  2. Schulte-Herbrüggen B, Cowlishaw G, Homewood K, Rowcliffe JM (2013) The importance of bushmeat in the livelihoods of West African cash-crop farmers living in a faunally-depleted landscape. PLoS One 8(8):e72807. https://doi.org/10.1371/journal.pone.0072807

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Fa JF, Bell DJ (2005) Hunting vulnerability, ecological characteristics and harvest rates of bushmeat species in afrotropical forests. Biol Conserv 121:167–176

    Article  Google Scholar 

  4. Robinson JG, Bodmer RE (1999) Towards wildlife management in tropical forests. J Wildl Mgt 63:1–13

    Article  Google Scholar 

  5. Oates JF (1999) Myth and reality in the rain Forest. University of California Press, Los Angeles

    Google Scholar 

  6. Taylor G, Scharlemann JPW, Rowcliffe M, Kümpel N, Harfoot MBJ, Fa JE, Melisch R et al (2015) Synthesising bushmeat research effort in west and Central Africa: a new regional database. Biol Conserv 181:199–205

    Article  Google Scholar 

  7. Cowlishaw G, Mendelson S, Rowcliffe JM (2005) Evidence for post-depletion sustainability in a mature bushmeat market. Appl Ecol 42(3):460–468

    Article  Google Scholar 

  8. Asibey EOA (1977) Expected effects of land-use patterns on future supplies of bushmeat in Africa south of the Sahara. Environ Conserv 4:43–49

    Article  Google Scholar 

  9. Odonkor S, Gbogbo F, Attuquayefio DK, Bimi L (2007) The wildlife trade in Ghana: a threat to biodiversity conservation. Ghana J Sci 47:101–106

    Google Scholar 

  10. Falk H, Dürr S, Hauser R, Wood K, Tenger B, Lörtscher M, Schuepbach-Regula G (2013) Illegal import of bushmeat and other meat products into Switzerland on commercial passenger flights. Sci Tech Rev 32(3) no. 17102013-00010-E

  11. Hayman DTS, Yu M, Crameri G, Wang L, Suu-Ire R, Wood JLN, Cunningham AA (2012) Ebola virus antibodies in fruit bats, Ghana, West Africa. Emerg Infect Dis 18. https://doi.org/10.3201/eid1807.111654

  12. Kamins AO, Rowcliffe JM, Ntiamoa-Baidu Y, Cunningham AA (2015) Characteristics and risk perceptions of Ghanaians potentially exposed to bat-borne zoonoses through bushmeat. EcoHealth 12:104–120. https://doi.org/10.1007/s10393-014-0977-0

    Article  PubMed  Google Scholar 

  13. Gbogbo F, Opoku KM (2017) Knowledge, perceptions and attitude of a community living around a colony of straw coloured fruit bats (Eidolon helvum) in Ghana after Ebola virus disease outbreak in West Africa. Zoonoses Public Health 64(8):628–635. https://doi.org/10.1111/zph.12357

    CAS  Article  PubMed  Google Scholar 

  14. Piskorová L, Vasilková Z, Krupicer I (2003) Heavy metal residues in tissues of wild boar (Sus scrofa) and red fox (Vulpes vulpes) in the central Zemplin region of the Slovak Republic. Czech J Anim Sci 48:134–138

    Google Scholar 

  15. Reglero MM, Taggart MA, Monsalve-Gonzalez L, Mateo R (2009) Heavy metal exposure in large game from a lead mining area: effects on oxidative stress and fatty acid composition in liver. Environ Pollut 157:1388–1395

    CAS  Article  Google Scholar 

  16. Pokomy B, Jelen KI, Kierdorf U, Kierdorf H (2009) Roe deer antlers as historical bioindicators of lead pollution in the vicinity of a lead smelter, Slovenia. Water Air Soil Pollut Z03:317–324

    Google Scholar 

  17. Bortey-Sam N, Nakayama SM, Akoto O, Ikenaka Y, Baidoo E, Mizukawa H, Ishizuka M (2015) Ecological risk of heavy metals and a metalloid in agricultural soils in Tarkwa, Ghana. Int J Environ Res Public Health 12(9):11448–11465. https://doi.org/10.3390/ijerph120911448

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Bortey-Sam N, Nakayama SM, Akoto O, Ikenaka Y, Fobil NJ, Baidoo E, Mizukawa H, Ishizuka M (2015) Accumulation of heavy metals and metalloid in foodstuffs from agricultural soils around Tarkwa area in Ghana, and associated human health risks. Int J Environ Res Public Health 12(8):8811–8827. https://doi.org/10.3390/ijerph120808811

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Cobbina SJ, Duwiejuah AB, Quansah R, Obiri S, Bakobie N (2015) Comparative assessment of heavy metals in drinking water sources in two small-scale mining communities in northern Ghana. Int J Environ Res Public Health 12(9):10620–10634. https://doi.org/10.3390/ijerph120910620

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Gbogbo F, Otoo DS (2015) The concentrations of five heavy metals in components of an economically important urban coastal wetland in Ghana: public health and phytoremediation implications. Environ Monit Assess 187(10):655–611. https://doi.org/10.1007/s10661-015-4880-0

    CAS  Article  PubMed  Google Scholar 

  21. Gbogbo F, Otoo DS, Asomaning O, Huago RQ (2017) Contamination status of arsenic in fish and shellfish from three river basins in Ghana. Environ Monit Assess 189(8):400. https://doi.org/10.1007/s10661-017-6118-9

    CAS  Article  PubMed  Google Scholar 

  22. Gbogbo F, Otoo DS, Huago RQ, Asomaning O (2017) High levels of mercury in wetland resources from three river basins in Ghana: a concern for public health. Environ Sci Pollut Res 24(6):5619–5627

    CAS  Article  Google Scholar 

  23. Gbogbo F, Arthur-Yartel A, Bondzie JA, Dorleku W, Dadzie S, Kwansa-Bentum B, Ewool J, Billah MK, Lamptey AM (2018) Risk of heavy metal ingestion from the consumption of two commercially valuable species of fish from the fresh and coastal waters of Ghana. PLoS One 13(3):e0194682. https://doi.org/10.1371/journal.pone.0194682

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. MacLeod SB, Kerley GIH, Gaylard A (1996) Habitat and diet of bushbuck Tragelaphus scriptus in the Woody Cape Nature Reserve: observations from faecal analysis. Afr J Wildl Res 26(1):19–25

    Google Scholar 

  25. Hofmann T, Roth H (2003) Feeding preferences of duiker (Cephalophus maxwelli, C. rufilatus, and C. niger) in Ivory Coast and Ghana. Mammal Biol Zeitschrift für Säugetierkunde 68(2):65–77

    Article  Google Scholar 

  26. Kingdon J, Happold D, Butynski T, Hoffmann M, Happold M, Kalina J (2013) Mammals of Africa. A&C Black, London, pp 672–673 ISBN 978-1-4081-8996-2

    Google Scholar 

  27. Harich FK, Treydte AC, Sauerborn J, Owusu EH (2013) People and wildlife: conflicts arising around the Bia Conservation Area in Ghana. J Nat Conserv 21(5):342–349

    Article  Google Scholar 

  28. Drevnick PE, Lamborg CH, Horgan MJ (2015) Increase in mercury in Pacific yellowfin tuna. Environ Toxicol Chem. https://doi.org/10.1002/etc.2883

  29. Damiano S, Papetti P, Menesatti P (2011) Accumulation of heavy metals to assess the health status of swordfish in a comparative analysis of Mediterranean and Atlantic areas. Mar Pollut Bull 62:1920–1925

    CAS  Article  Google Scholar 

  30. Tongesayi T, Fedick P, Lechner L, Brock C, Beau LA, Bray C (2013) Daily bioaccessible levels of selected essential but toxic heavy metals from the consumption of non-dietary food sources. Food Chem Toxicol 62:142–147

    CAS  Article  Google Scholar 

  31. Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicol 192(2–3):95–117

    CAS  Article  Google Scholar 

  32. Tinkov AA, Filippini T, Ajsuvakova OP, Skalnaya MG, Aaseth J, Bjørklund G, Gatiatulina ER, Popova EV, Nemereshina ON, Huang PT, Vinceti M, Skalny AV (2018) Cadmium and atherosclerosis: a review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environ Res 162:240–260. https://doi.org/10.1016/j.envres.2018.01.008

    CAS  Article  PubMed  Google Scholar 

  33. Cecil KM, Brubaker CJ, Adler CM, Dietrich KN, Altaye M et al (2008) Decreased brain volume in adults with childhood lead exposure. PLoS Med 5:741–750. https://doi.org/10.1371/journal.pmed.0050112

    CAS  Article  Google Scholar 

  34. Wright JP, Dietrich KN, Ris MD, Hornung RW, Wessel SD et al (2008) Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med 5:732–740. https://doi.org/10.1371/journal.pmed.0050101

    CAS  Article  Google Scholar 

  35. Conte F, Copat C, Longo S, Conti GO, Grasso A et al (2016) Polycyclic aromatic hydrocarbons in Haliotis tuberculata (Linnaeus, 1758) (Mollusca, Gastropoda): considerations on food safety and source investigation. Food ChemToxicol 94:57–63

    CAS  Article  Google Scholar 

  36. Chardonnet P, Fritz H, Zorzi N, Feron E (1995) Current importance of traditional hunting and major contrasts in wild meat consumption in subsaharan Africa. In: Bissonette JA, Krausman PR (eds) Integrating people and wildlife for a sustainable future. The Wildlife Society, Bethesda, pp 304–307

    Google Scholar 

  37. Wilkie DS, Carpenter JF (1999) Bushmeat hunting in the Congo Basin: an assessment of impacts and options for mitigation. Biodivers Conserv 8(7):927–955. https://doi.org/10.1023/A:1008877309871

    Article  Google Scholar 

  38. Moreau MF, Surico-Bennett J, Vicario-Fisher M, Crane D, Gerads R, Gersberg RM, Hurlbert SH (2007) Contaminants in tilapia (Oreochromis mossambicus) from the Salton Sea, California, in relation to human health, piscivorous birds and fish meal production. Hydrobiologia 576:127–165. https://doi.org/10.1007/s10750-006-0299-5

    CAS  Article  Google Scholar 

  39. Gusso-Choueri PK, Araújo GS, Cruz ACF, Stremel TRO, Campos SX, Abessa DMS et al (2018) Metals and arsenic in fish from a Ramsar site under past and present human pressures: consumption risk factors to the local population. Sci Total Environ 628-629:621–630. https://doi.org/10.1016/j.scitotenv.2018.02.005

    CAS  Article  PubMed  Google Scholar 

  40. Codex Alimentarius Commission (CAC) (1994) Codex general standard for contaminants and toxins in foods; Joint FAO/WHO food standards programme, Doc. no. CX/FAC 96/17

  41. Codex Alimentarius Commission (CAC) (2011) Working document for information and use in discussions related to contaminants and toxins in the GSCTFF. Joint FAO/WHO food standards programme CODEX Committee on contaminants in foods. Fifth Session, The Hague, The Netherlands, 2011; 21–25 March 2011

  42. Akoto O, Eshun BF, Darko G, Adei E (2014) Concentrations and health risk assessments of heavy metals in fish from the Fosu Lagoon. Int J Environ Res 8(2):403–410

    Google Scholar 

  43. Harmanescu M, Alda LM, Bordean DM, Gogoasa I, Gergen I (2011) Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area; a case study: Banat County, Romania. Chem Cent J 5:64

    CAS  Article  Google Scholar 

  44. USEPA (2016) US Environmental Protection Agency. Integrated Risk Information System. https://www.epa.gov/iris. Accessed 27 Aug 2018

  45. Mandal B, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    CAS  Article  Google Scholar 

  46. Borak J, Hosgood HD (2007) Seafood arsenic: implications for human risk assessment. Regul Toxicol Pharmacol 47:204–212

    CAS  Article  Google Scholar 

  47. Copat C, Arena G, Fiore M, Ledda C, Fallico R, Sciacca S, Ferrante M (2013) Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: consumption advisories. Food Chem Toxicol 53:33–37

    CAS  Article  Google Scholar 

  48. USEPA (2000) Guidance for assessing chemical contaminant data for use in fish advisories. In: Risk Assessment and Fish Consumption Limits. 2000 EPA 823-B-00-008, vol II. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  49. Wolfe ND, Daszak P, Kilpatrick AM, Burke DS (2005) Bushmeat hunting, deforestation, and prediction of zoonotic disease emergence Emerg. Infect Dis Ther 11:1822–1827

    Google Scholar 

  50. Iqbal S (2008) Assessment of human health risk from consumption of wild game meat with possible lead contamination among the residents of the state of North Dakota. National Center for Environmental Health, Centers for Disease Control and Prevention: Atlanta, Georgia, Epi-Aid Trip Report: USA: http://www.rmef.org/NR/rdonlyres/F07627AA-4D94-4CBCB8FD-4F4F18401303/0/ND_report.pdf. Accessed 27 Jun 2018

  51. Oladunjoye RY, Asiru RA, Shokoya DA (2015) Heavy metals content in ungulates of Ogun State agriculture farm settlement, Ayo-Iwoye, Nigeria. J Biol Life Sci 6(2):119–129

    Article  Google Scholar 

  52. Soewu DA, Agbolade MO, Oladunjoye RY, Ayodele AI (2014) Bioaccumulation of heavy metals in cane rat (Thryonomys swinderianus) in Ogun State, Nigeria. J Toxicol Environ Health Sci 6(8):154–160

    CAS  Article  Google Scholar 

  53. Igene JO, Okoro KI, Ebabhamiegbebho PA, Evivie SA (2015) A study assessing some metal elements contamination levels in grasscutter (Thryonomys swinderianus Temminck) meat. Int J Biotechnol Food Sci 3(5):63–69

    Google Scholar 

  54. Needleman HL, McFarland C, Ness RB, Fienberg SE, Tobin MJ (2002) Bone lead levels in adjudicated delinquents: a case control study. Neurotoxicol Teratol 24:711–717

    CAS  Article  Google Scholar 

  55. Braun JM, Kahn RS, Froehlich T, Auinger P, Lanphear BP (2006) Exposures to environmental toxicants and attention deficit hyperactivity disorder in U.S. children. Environ Health Perspect 114:1904–1909. https://doi.org/10.1289/ehp.9478

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P et al (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113:894–899. https://doi.org/10.1289/ehp.7688

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Schnaas L, Rothenberg SJ, Flores M-F, Martinez S, Hernandez C, Osorio E, Velasco SR, Perroni E (2006) Reduced intellectual development in children with prenatal lead exposure. Environ Health Perspect 114:791–797. https://doi.org/10.1289/ehp.8552

    CAS  Article  PubMed  Google Scholar 

  58. Adei E, Forson-Adaboh K (2008) Toxic (Pb, Cd, Hg) and essential (Fe, Cu, Zn, Mn) metal content of liver tissue of some domestic and bush animals in Ghana. Food Addit Contam Part B Surveill 1(2):100–105. https://doi.org/10.1080/02652030802566319

    CAS  Article  PubMed  Google Scholar 

  59. Conservation International Ghana (2002) Assessment of bushmeat trade during the annual closed season on hunting in Ghana. http://www.fao.org/docrep/pdf/010/ai793e/ai793e00.pdf. Accessed 18/09/2018

  60. Ofori BY, Attuquayefio DK (2010) Hunting intensity in the suhuma forest reserve in the Sefwi Wiawso district of the western region of ghana: a threat to biodiversity conservation. WAJAE 17:135–142

    Google Scholar 

  61. Amfo-Out R, Agyenim JB, Adzraku S (2014) Meat contamination through singeing with scrap tyres in Akropong-Akuapem abattoir, Ghana. Appl Res J 1(1):12–19

    Google Scholar 

  62. Ralston NVC, Ralston CR, Blakwell IJL, Raymond LJ (2008) Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicol. 29(5):802–811

    CAS  Article  Google Scholar 

  63. Henríquez-Hernández LA, Luzardo OP, Boada LD, Carranza C, Pérez Arellano JL, González-Antuña A, Almeida-González M, Barry-Rodríguez C, Zumbado M, Camacho M (2017) Study of the influencing factors of the blood levels of toxic elements in Africans from 16 countries. Environ Pollut 230:817–828

    Article  Google Scholar 

  64. Lasorsa B, Allen-Gil S (1995) The methylmercury to total mercury ratio in selected marine, freshwater, and terrestrial organisms. Water Air Soil Pollut 80(1):905–913

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We acknowledge with gratitude the support of Messrs. Nash and Crabbe of the Chemistry Department, Ghana Atomic Energy Commission. We are grateful to Ms. Anna Arthur-Yartel, Messrs. Emmanuel Ayisi, David Martei, Emmanuel Osei Mensah, and Mr. Richard Obeng Kyeremeh for their support in diverse ways.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Gbogbo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gbogbo, F., Rainhill, J.E., Koranteng, S.S. et al. Health Risk Assessment for Human Exposure to Trace Metals Via Bushmeat in Ghana. Biol Trace Elem Res 196, 419–429 (2020). https://doi.org/10.1007/s12011-019-01953-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01953-7

Keywords

  • Trace metals
  • Bushmeat
  • Lead
  • Health risk
  • Estimated daily intake