Skip to main content

Advertisement

Log in

The Effect of Selenium on CYP450 Isoform Activity and Expression in Pigs

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium is an essential nutrient in diets; however, the effects of selenium on enzyme metabolic activation are not currently clear. Cytochromes P450 (CYP450) are major phase I metabolic enzymes involved in the biotransformation of xenobiotics and endogenous compounds to form electrophilic reactive metabolites. To investigate the effect of selenium on CYP450 isoform activity, the Landrace pigs were divided into three groups: the control group (containing Se 0.15 mg/kg), the Se-deficient group (Se 0.03 mg/kg), and the Se-supply group (Se 0.35 mg/kg). After 1 week of administration, a mixed solution (20 mg/kg of dextromethorphan, phenacetin, chlorzoxazone, and 10 mg/kg of testosterone in a CMC-Na solution) was intravenously injected into all pigs. The mixed solution content and pharmacokinetic parameters were assayed by HPLC and DAS, respectively. To investigate the effect of selenium on CYP450 isoform expression, RNA-Seq analysis, Western boltting, and qPCR were used. Results showed that Se-supply group significantly increased the activity and expression of CYP1A2 and CYP2D25, and decreased CYP3A29. Se-deficient group decreased the activity of CYP1A2, CYP2D25, and CYP2E1. These results demonstrated that selenium content affecting the activity or expression of the CYP450 isoform may lead to a food-drug interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jiang Z-H, Lin H-J, Yao H-D, Zhang Z-W, Fu J, Xu S-W (2017) Selw protects against H 2 O 2-induced liver injury in chickens via inhibiting inflammation and apoptosis. RSC Adv 7(25):15158–15167

    Article  CAS  Google Scholar 

  2. Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268. https://doi.org/10.1016/s0140-6736(11)61452-9

    Article  CAS  PubMed  Google Scholar 

  3. Marshall M, Arnott M, Jacobs M, Griffin A (1979) Selenium effects on the carcinogenicity and metabolism of 2-acetylaminofluorene. Cancer Lett 7(6):331–338

    Article  CAS  PubMed  Google Scholar 

  4. Brigelius-Flohe R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830(5):3289–3303. https://doi.org/10.1016/j.bbagen.2012.11.020

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Yang HM, Cao W, Li YB (2017) Effect of selenium supplementation on pigeon reproductive performance, selenium concentration and antioxidant status. Poult Sci 96(9):3407–3413. https://doi.org/10.3382/ps/pex121

    Article  CAS  PubMed  Google Scholar 

  6. Liu R, Jia T, Cui Y, Lin H, Li S (2018) The protective effect of selenium on the chicken pancreas against cadmium toxicity via alleviating oxidative stress and autophagy. Biol Trace Elem Res 184(1):240–246. https://doi.org/10.1007/s12011-017-1186-9

    Article  CAS  PubMed  Google Scholar 

  7. Gong J, Xiao M (2016) Selenium and antioxidant status in dairy cows at different stages of lactation. Biol Trace Elem Res 171(1):89–93

    Article  CAS  PubMed  Google Scholar 

  8. Meng T, Liu YL, Xie CY, Zhang B, Huang YQ, Zhang YW, Yao Y, Huang R, Wu X (2019) Effects of different selenium sources on laying performance, egg selenium concentration, and antioxidant capacity in laying hens. Biol Trace Elem Res 189(2):548–555. https://doi.org/10.1007/s12011-018-1490-z

    Article  CAS  PubMed  Google Scholar 

  9. Feng S, He X (2013) Mechanism-based inhibition of CYP450: an indicator of drug-induced hepatotoxicity. Curr Drug Metab 14(9):921–945

    Article  CAS  PubMed  Google Scholar 

  10. Masubuchi Y, Nakano T, Ose A, Horie T (2001) Differential selectivity in carbamazepine-induced inactivation of cytochrome P450 enzymes in rat and human liver. Arch Toxicol 75(9):538–543

    Article  CAS  PubMed  Google Scholar 

  11. Jones DR, Gorski JC, Hamman MA, Mayhew BS, Rider S, Hall SD (1999) Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J Pharmacol Exp Ther 290(3):1116–1125

    CAS  PubMed  Google Scholar 

  12. Koudriakova T, Iatsimirskaia E, Utkin I, Gangl E, Vouros P, Storozhuk E, Orza D, Marinina J, Gerber N (1998) Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab Dispos 26(6):552–561

    CAS  PubMed  Google Scholar 

  13. Zheng S, Jin X, Chen M, Shi Q, Zhang H, Xu S (2019) Hydrogen sulfide exposure induces jejunum injury via CYP450s/ROS pathway in broilers. Chemosphere 214:25–34

    Article  CAS  PubMed  Google Scholar 

  14. Steinbrecht S, Konig R, Schmidtke KU, Herzog N, Scheibner K, Kruger-Genge A, Jung F, Kammerer S, Kupper JH (2019) Metabolic activity testing can underestimate acute drug cytotoxicity as revealed by HepG2 cell clones overexpressing cytochrome P450 2C19 and 3A4. Toxicology 412:37–47. https://doi.org/10.1016/j.tox.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  15. Sun L-H, Zhang N-Y, Zhu M-K, Zhao L, Zhou J-C, Qi D-S (2015) Prevention of aflatoxin B1 hepatoxicity by dietary selenium is associated with inhibition of cytochrome P450 isozymes and up-regulation of 6 selenoprotein genes in chick liver. J Nutr 146(4):655–661

    Article  PubMed  Google Scholar 

  16. Cao Z, Shao B, Xu F, Liu Y, Li Y, Zhu Y (2017) Protective effect of selenium on aflatoxin B1-induced testicular toxicity in mice. Biol Trace Elem Res 180(2):233–238

    Article  CAS  PubMed  Google Scholar 

  17. Nielsen SD, Bauhaus Y, Zamaratskaia G, Junqueira MA, Blaabjerg K, Petrat-Melin B, Young JF, Rasmussen MK (2017) Constitutive expression and activity of cytochrome P450 in conventional pigs. Res Vet Sci 111:75–80. https://doi.org/10.1016/j.rvsc.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  18. Achour B, Barber J, Rostami-Hodjegan A (2011) Cytochrome P450 Pig liver pie: determination of individual cytochrome P450 isoform contents in microsomes from two pig livers using liquid chromatography in conjunction with mass spectrometry [corrected]. Drug Metab Dispos 39(11):2130–2134. https://doi.org/10.1124/dmd.111.040618

    Article  CAS  PubMed  Google Scholar 

  19. Vaghela M, Sahu N, Kharkar P, Pandita N (2017) In vivo pharmacokinetic interaction by ethanolic extract of Gymnema sylvestre with CYP2C9 (Tolbutamide), CYP3A4 (Amlodipine) and CYP1A2 (Phenacetin) in rats. Chem Biol Interact 278:141–151. https://doi.org/10.1016/j.cbi.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  20. Huang J, Liang X, Xuan Y, Geng C, Li Y, Lu H, Qu S, Mei X, Chen H, Yu T, Sun N, Rao J, Wang J, Zhang W, Chen Y, Liao S, Jiang H, Liu X, Yang Z, Mu F, Gao S (2017) A reference human genome dataset of the BGISEQ-500 sequencer. GigaScience 6(5):1–9. https://doi.org/10.1093/gigascience/gix024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38(6):1767–1771. https://doi.org/10.1093/nar/gkp1137

    Article  CAS  PubMed  Google Scholar 

  22. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21(12):2213–2223. https://doi.org/10.1101/gr.124321.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen M, Li X, Shi Q, Zhang Z, Xu S (2019) Hydrogen sulfide exposure triggers chicken trachea inflammatory injury through oxidative stress-mediated FOS/IL8 signaling. J Hazard Mater 368:243–254

    Article  CAS  PubMed  Google Scholar 

  27. Wang W, Chen M, Jin X, Li X, Yang Z, Lin H, Xu S (2018) H2S induces Th1/Th2 imbalance with triggered NF-κB pathway to exacerbate LPS-induce chicken pneumonia response. Chemosphere 208:241–246

    Article  CAS  PubMed  Google Scholar 

  28. Jiang Z, Jiang X, Li C, Xue H, Zhang X (2016) Development of an IgY antibody-based immunoassay for the screening of the CYP2E1 inhibitor/enhancer from herbal medicines. Front Pharmacol 7:502

    PubMed  PubMed Central  Google Scholar 

  29. Jin X, Jia T, Liu R, Xu S (2018) The antagonistic effect of selenium on cadmium-induced apoptosis via PPAR-γ/PI3K/Akt pathway in chicken pancreas. J Hazard Mater 357:355–362

    Article  CAS  PubMed  Google Scholar 

  30. Spaggiari D, Geiser L, Daali Y, Rudaz S (2014) Phenotyping of CYP450 in human liver microsomes using the cocktail approach. Anal Bioanal Chem 406(20):4875–4887. https://doi.org/10.1007/s00216-014-7915-4

    Article  CAS  PubMed  Google Scholar 

  31. Karakus E, Zahner D, Grosser G, Leidolf R, Gundogdu C, Sanchez-Guijo A, Wudy SA, Geyer J (2018) Estrone-3-sulfate stimulates the proliferation of T47D breast cancer cells stably transfected with the sodium-dependent organic anion transporter SOAT (SLC10A6). Front Pharmacol 9:941. https://doi.org/10.3389/fphar.2018.00941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. White AJ, O’Brien KM, Niehoff NM, Carroll R, Sandler DP (2019) Metallic air pollutants and breast cancer risk in a nationwide cohort study. Epidemiology 30(1):20–28. https://doi.org/10.1097/ede.0000000000000917

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jiang Z, Jiang X, Li C, Xue H, Zhang X (2016) Development of an IgY antibody-based immunoassay for the screening of the CYP2E1 inhibitor/enhancer from herbal medicines. Front Pharmacol 7:502. https://doi.org/10.3389/fphar.2016.00502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ur Rasheed MS, Mishra AK, Singh MP (2017) Cytochrome P450 2D6 and parkinson's disease: polymorphism, metabolic role, risk and protection. Neurochem Res 42(12):3353–3361. https://doi.org/10.1007/s11064-017-2384-8

    Article  CAS  PubMed  Google Scholar 

  35. Hwang GS, Bhat R, Crutchley RD, Trivedi MV (2018) Impact of CYP2D6 polymorphisms on endoxifen concentrations and breast cancer outcomes. Pharmacogenomics J 18(2):201–208. https://doi.org/10.1038/tpj.2017.36

    Article  CAS  PubMed  Google Scholar 

  36. Mitra R, Guo Z, Milani M, Mesaros C, Rodriguez M, Nguyen J, Luo X, Clarke D, Lamba J, Schuetz E, Donner DB, Puli N, Falck JR, Capdevila J, Gupta K, Blair IA, Potter DA (2011) CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (+/-)-14,15-epoxyeicosatrienoic acid (EET). J Biol Chem 286(20):17543–17559. https://doi.org/10.1074/jbc.M110.198515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oguro A, Sakamoto K, Funae Y, Imaoka S (2011) Overexpression of CYP3A4, but not of CYP2D6, promotes hypoxic response and cell growth of Hep3B cells. Drug Metab Pharmacokinet 26(4):407–415

    Article  CAS  PubMed  Google Scholar 

  38. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39(3):112–120. https://doi.org/10.1016/j.tibs.2013.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vinceti M, Filippini T, Cilloni S, Crespi CM (2017) The epidemiology of selenium and human cancer. Adv Cancer Res 136:1–48. https://doi.org/10.1016/bs.acr.2017.07.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Key R&D Program of China (2017YFD0501003), Key Projects of Universities in Henan (19B180001), and Science and Technology of Anyang city (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Guo.

Ethics declarations

The experimental protocol was reviewed and approved by the Ethics Committee of the Institute of Modern Biotechnology for the Uses of Laboratory Animals.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Gu, L., Liang, X. et al. The Effect of Selenium on CYP450 Isoform Activity and Expression in Pigs. Biol Trace Elem Res 196, 454–462 (2020). https://doi.org/10.1007/s12011-019-01945-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01945-7

Keywords

Navigation