Skip to main content
Log in

Chemometric Analysis of Antioxidant and Mineral Elements in Colostrum of Native and Non-native Goat Breeds to Hypoxic Conditions at High Altitude

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Colostrum of goat is a well-known nutritional source of animal product, which is attributed to innumerable nutritional properties. To enrich nutritional resources for understanding various nutritional values of animal product at high altitude, chemometric analysis of antioxidant and mineral element study was carried out by comparing antioxidants capacity, free radical scavenging activity, and certain mineral elements in colostrums of native and non-native goat breeds. Colostrum samples were collected from native Changthangi (CNG) and non-native Sirohi (SIRO) goat breeds, situated at naturally exposed high altitude of 3505.2 m above mean sea level. The antioxidant of samples was measured by ferric reducing ability of plasma (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) activity assay, and mineral elemental quantification of Fe, Mg, Mn, Zn, Co, Cu, K, Ca, B, Ni, and Cr was performed using ICP-OES. The values of FRAP, DPPH, and Fe, Mg, Mn, Zn, Co, Cu, K, and Ca in colostrums of native goat breed was significantly (p ≤ 0.05) higher than the non-native goat. These data conclude that high altitude native goat has more antioxidant and mineral elements in colostrum than non-native colostrum. This study could provide a basis for establishing the role of colostrum supplements as a natural source to strengthen the endurance to modalities for the survival of newborn kids of goat within the native high altitude environment. This is the first report of a comparative chemometric analysis of colostrums of goat species and can be utilized to characterize the nutritional aspect of animal product with unique antioxidant and mineral nutrients composition in colostrum of goat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sun Y, Wang C, Sun X, Guo M (2019) Protein digestion properties of Xinong Saanen goat colostrum and mature milk using in vitro digestion model. J Sci Food Agric. https://doi.org/10.1002/jsfa.9852

  2. Kim JH, Jung WS, Choi NJ, Kim DO, Shin DH, Kim YJ (2009) Health-promoting effects of bovine colostrum in Type 2 diabetic patients can reduce blood glucose, cholesterol, triglyceride and ketones. J Nutr Biochem 20:298–303

    Article  PubMed  CAS  Google Scholar 

  3. Choi HS, Jung KH, Lee SC, Yim SV, Chung JH, Kim YW, Jeon WK, Hong HP, Ko YG, Kim CH, Jang KH, Kang SA (2009) Bovine colostrum prevents bacterial translocation in an intestinal ischemia/reperfusion-injured rat model. J Med Food 12:37–46

    Article  CAS  PubMed  Google Scholar 

  4. Mellor DJ (1990) Meeting colostrum needs of new-born lambs. In Practice 12:239–244

    Article  Google Scholar 

  5. Hernandez-Castellano LE, Morales-delaNuez A, Sanchez-Macias D, Moreno-Indias TA, Capote J, Argüello A, Castro N (2015) The effect of colostrum source (goat vs. sheep) and timing of the first colostrum feeding (2 h vs. 14 h after birth) on body weight and immune status of artificially reared newborn lambs. J Dairy Sci 98:204–210

    Article  CAS  PubMed  Google Scholar 

  6. Civra A, Altomare A, Francese R, Donalisio M, Aldini G, Lembo D (2019) Colostrum from cows immunized with a veterinary vaccine against bovine rotavirus displays enhanced in vitro anti-human rotavirus activity. J Dairy Sci 102(6):4857–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jennes R (1980) Composition and characteristics of goat milk. Review: J Dairy Science 63:1605–1630

    Google Scholar 

  8. Csapo J, Csapo-Kiss Z, Martin TG, Szentpeteri J, Wolf G (1994) Composition of colostrum from goats, ewes and cows producing twins. Int Dairy J 4:445–458

    Article  CAS  Google Scholar 

  9. Kumar P, Giri A, Bharti VK, Kumar K, Chaurasia OP (2019) Evaluation of various biochemical stress markers and morphological traits in different goat breeds at high-altitude environment. Biol Rhythm Res 0929-1016:1744–4179

    Google Scholar 

  10. Paralikar SJ, Paralikar JH (2010) High-altitude medicine. Indian J Occup Environ Med 14:6–12

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jefferson JA, Simoni J, Escudero E, Hurtado ME, Swenson ER, Wesson DE, Schreiner GF, Schoene RB, Johnson RJ, Hurtado A (2004) Increased oxidative stress following acute and chronic high altitude exposure. High Alt Med Biol 5:61–69

    Article  CAS  PubMed  Google Scholar 

  12. Mohanraj P, Merola AJ, Wright VP, Clanton TL (1985) (1998). Antioxidants protect rat diaphragmatic muscle function under hypoxic conditions. J Appl Physiol 84:1960–1966

    Article  Google Scholar 

  13. Cano I, Selivanov V, Gomez-Cabrero D, Tegnér J, Roca J, Wagner PD, Cascante M (2014) Oxygen Pathway Modeling Estimates High Reactive Oxygen Species Production above the Highest Permanent Human Habitation. PLoS One 9:e111068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bakonyi T, Radak Z (2004) High altitude and free radicals. J Sports Sci Med 3:64–69

    PubMed  PubMed Central  Google Scholar 

  15. Hua X, Bromham L (2017) Darwinism for the Genomic Age: Connecting Mutation to Diversification. Front Genet 8:12

    Article  PubMed  PubMed Central  Google Scholar 

  16. Berihulay H, Abied A, He X, Jiang L, Ma Y (2019) Adaptation Mechanisms of Small Ruminants to Environmental Heat Stress. Animals (Basel) 9(3):75

    Article  Google Scholar 

  17. Bharti VK (2012) Region specific hybrid goat production technology for meat purpose to enhance fresh meat supply. DRDO Technology Spectrum p, New Delhi, p 114

    Google Scholar 

  18. Bharti VK, Giri A, Vivek P, Kalia S (2017) Health and productivity of dairy cattle in high altitude cold desert environment of Leh-Ladakh: a review. Indian J Anim Sci 87:3–10

    CAS  Google Scholar 

  19. Kumar P, Bharti VK, Jadhav SE, Charan G, Gogoi D, Srivastava RB (2016) Evaluation of water and feed intake and growth performance of goat (Capra hircus) at high altitude. Anim Nutr Feed Technol 16:521–526

    Article  Google Scholar 

  20. Przybylska J, Albera E, Kankofer M (2007) Antioxidants in Bovine Colostrum. Reprod Domest Anim 42:402–409

    Article  CAS  PubMed  Google Scholar 

  21. Gruse J, Kanitz E, Weitzel JM, Tuchscherer A, Stefaniak T, Jawor P, Wolffram S, Hammon HM (2016) Quercetin Feeding in Newborn Dairy Calves Cannot Compensate Colostrum Deprivation: Study on Metabolic, Antioxidative and Inflammatory Traits. PLoS One 11:e0146932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Vivek P, Bharti VK, Giri A, Kalia S, Raj T, Kumar B (2018) Endurance exercise causes adverse changes in some hematological and physio-biochemical indices in ponies under high altitude stress condition. Indian J Anim Sci 88:222–228

    CAS  Google Scholar 

  23. Haenlein GF (2001) Past, present, and future perspectives of small ruminant dairy research. J Dairy Sci 84:2097–2115

    Article  CAS  PubMed  Google Scholar 

  24. Kumar P, Biswas A, Bharti VK, Srivastava RB (2014) The effect of vitamin C supplementation on performance and blood biochemical parameters in Broiler chicken at Leh-Ladakh. Anim Nutr Feed Technol 14:329–336

    Article  Google Scholar 

  25. Barrionuevo M, Alferez MJM, Lopez-Aliaga I, Sanz Sampelayo MR, Campos MS (2002) Beneficial effect of goat’s milk on nutritive utilization of Fe and Cu in malabsorption syndrome. J Dairy Sci 85:657–664

    Article  CAS  PubMed  Google Scholar 

  26. Appukutty M, Radhakrishnan AK, Ramasamy K, Ramasamy R, Abdul Majeed AB, Noor MI, Safii NS, Koon PB, Chinna K, Haleagrahara N (2012) Colostrum supplementation protects against exercise-induced oxidative stress in skeletal muscle in mice. BMC Res Notes 5:649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Benzie IFF, Strain JJ (1996) The Ferric Reducing Ability of Plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  28. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  29. Kicinska A (2018) Health risk assessment related to an effect of sample size fractions: methodological remarks. Stochastic Stoch Environ Res Risk Assess 32:1867–1887

    Article  Google Scholar 

  30. Verma P, Sharma A, Sodhi M, Thakur K, Kataria R, Niranjan SK, Vijay B, Kumar P, Giri A, Kalia S, Mukesh M (2018) Transcriptome Analysis of Circulating PBMCs to Understand Mechanism of High Altitude Adaptation in Native Cattle of Ladakh Region. Sci Rep 8:1–15

    Google Scholar 

  31. Verma P, Sharma A, Sodhi M, Thakur K, Bharti VK, Kumar P, Giri A, Kalia S, Swami SK, Mukesh M (2018) Overexpression of genes associated with hypoxia in cattle adapted to Trans Himalayan region of Ladakh. Cell Biol Int 42:1141–1148

    Article  CAS  PubMed  Google Scholar 

  32. Martysiak-Żurowska D, Wenta W (2012) A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk. Acta Sci Pol Technol Aliment 11:83–89

    PubMed  Google Scholar 

  33. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4:118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mann S, Shandilya UK, Sodhi M, Prabhat K, Bharti VK, Verma P, Sharma A, Mohanthy A, Mukesh M (2016) Determination of antioxidant capacity and free radical scavenging activity of milk from native cows (Bos Indicus), exotic cows (Bos Taurus), and riverine buffaloes. Int J Dairy Process Res 3:66–70

    Google Scholar 

  35. Kumar P, Biswas A, Bharti VK, Srivastava RB (2013) Effects of dietary copper supplementation on production performance and blood biochemical parameters in broiler chickens at cold arid high altitude region of India. J Vet Sci 114:166–172

    Google Scholar 

  36. Siddiqui MH, Al-Whaibi MH, Sakran AM, Basalah MO, Ali HM (2012) Effect of calcium and potassium on antioxidant system of Vicia faba L. Under cadmium stress. Int J Mol Sci 13:6604–6619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yin DD, Wang QC, Zhou X, Li Y (2017) Endothelial dysfunction in renal arcuate arteries of obese Zucker rats: The roles of nitric oxide, endothelium-derived hyperpolarizing factors, and calcium-activated K+ channels. PLoS One 17:e0183124

    Article  CAS  Google Scholar 

  38. Hammoud SH, Omar AG, Eid AA, El-Mas MM (2017) CYP4A/CYP2C modulation of the interaction of calcium channel blockers with cyclosporine on EDHF-mediated renal vasodilations in rats. Toxicol Appl Pharmacol 334:110–119

    Article  CAS  PubMed  Google Scholar 

  39. Dong Y, Sawada Y, Cui J, Hayakawa M, Ogino D, Ishikawa M, Yoshitomi T (2016) Dorzolamide-induced relaxation of isolated rabbit ciliary arteries mediated by inhibition of extracellular calcium influx. Jpn J Ophthalmol 60:103–110

    Article  CAS  PubMed  Google Scholar 

  40. Winslow RM, Swenberg ML, Benson J, Perrella M, Benazzi L (1989) Gas exchange properties of goat hemoglobins A and C. J Biol Chem 264:4812–4817

    Article  CAS  PubMed  Google Scholar 

  41. Gassmann M, Muckenthaler MU (2015) Adaptation of iron requirement to hypoxic conditions at high altitude. J Appl Physiol 119:1432–1440

    Article  CAS  PubMed  Google Scholar 

  42. Goetze O, Schmitt J, Spliethoff K, Theurl I, Weiss G, Swinkels DW, Tjalsma H, Maggiorini M, Krayenbühl P, Rau M, Fruehauf H, Wojtal KA, Mullhaupt B, Fried M, Gassmann M, Lutz T, Geier A (2013) Adaptation of iron transport and metabolism to acute high-altitude hypoxia in mountaineers. Hepatology. 58:2153–2162

    Article  CAS  PubMed  Google Scholar 

  43. Venkata Krishnaiah M, Arangasamy A, Selvaraju S, Guvvala PR, Ramesh K (2019) Organic Zn and Cu interaction impact on sexual behaviour, semen characteristics, hormones and spermatozoal gene expression in bucks (Capra hircus). Theriogenology. 130:130–139

    Article  CAS  PubMed  Google Scholar 

  44. Milczarek M, Czopowicz M, Szara E, Szara T, Nalbert T, Kosieradzka I, Kaba J (2018) The concentration of copper, zinc, manganese and selenium in the serum and liver of goats with caprine arthritis-encephalitis. Pol J Vet Sci 21:715–720

    CAS  PubMed  Google Scholar 

  45. Chun YS, Choi E, Kim GT, Lee MJ, Lee MJ, Lee SE, Kim MS, Park JW (2000) Zinc induces the accumulation of hypoxia-inducible factor (HIF)-1alpha, but inhibits the nuclear translocation of HIF-1beta, causing HIF-1 inactivation. Biochem Biophys Res Commun 268:652–656

    Article  CAS  PubMed  Google Scholar 

  46. Salnikow K, Su W, Blagosklonny MV, Costa M (2000) Carcinogenic metals induce hypoxia-inducible factor-stimulated transcription by reactive oxygen species-independent mechanism. Cancer Res 60:3375–3378

    CAS  PubMed  Google Scholar 

  47. Nieboer E, Maxwell RI, Stafford AR (1984) Chemical and biological reactivity of insoluble nickel compounds and the bioinorganic chemistry of nickel. IARC Sci Publ 53:439–458

    CAS  Google Scholar 

  48. Arangasamy A, Krishnaiah MV, Manohar N, Selvaraju S, Rani GP, Soren NM, Reddy IJ, Ravindra JP (2018) Cryoprotective role of organic Zn and Cu supplementation in goats (Capra hircus) diet. Cryobiology 81:117–124

    Article  CAS  PubMed  Google Scholar 

  49. Gaur M, Pruthi V, Prasad R, Pereira BM (2000) Inductively coupled plasma emission spectroscopic and flame photometric analysis of goat epididymal fluid. Asian J Androl 2:288–292

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank all the staff of our animal facility for the care of the animals used in this study even being in harsh situations and for their assistance during the sampling. Authors also acknowledge the technical staff of DIHAR for providing technical facilitation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prabhat Kumar or Vijay K. Bharti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Bharti, V.K. & Mukesh, M. Chemometric Analysis of Antioxidant and Mineral Elements in Colostrum of Native and Non-native Goat Breeds to Hypoxic Conditions at High Altitude. Biol Trace Elem Res 196, 446–453 (2020). https://doi.org/10.1007/s12011-019-01940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01940-y

Keywords

Navigation