Boglione C, Gavaia P, Koumoundouros G et al (2013) Skeletal anomalies in reared European fish larvae and juveniles. Part 1: normal and anomalous skeletogenic processes. Rev Aquac 5:S99–S120. https://doi.org/10.1111/raq.12015
Article
Google Scholar
Lall SP, Lewis-McCrea L (2007) Role of nutrients in skeletal metabolism and pathology in fish - an overview. Aquaculture 267:3–19. https://doi.org/10.1016/j.aquaculture.2007.02.053
CAS
Article
Google Scholar
Boglione C, Gisbert E, Gavaia P et al (2013) Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors. Rev Aquac 5:S121–S167. https://doi.org/10.1111/raq.12016
Article
Google Scholar
Lall SP (2002) The minerals. In: Hardy JE, Halver R (eds) Fish nutrition, 3rd edn. Academic Press, San Diego, pp 259–308
Google Scholar
Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. Aquaculture 151:185–207. https://doi.org/10.1016/S0044-8486(96)01503-7
CAS
Article
Google Scholar
Dai Z, Koh W-P (2015) B-vitamins and bone health–a review of the current evidence. Nutrients 7:3322–3346. https://doi.org/10.3390/nu7053322
CAS
Article
PubMed
PubMed Central
Google Scholar
NRC (National Research Council) (2011) Nutrient requirements of fish and shrimp. The National Academies Press, Washington, DC
Google Scholar
Dermience M, Lognay G, Mathieu F, Goyens P (2015) Effects of thirty elements on bone metabolism. J Trace Elem Med Biol 32:86–106. https://doi.org/10.1016/j.jtemb.2015.06.005
CAS
Article
PubMed
Google Scholar
Halver JE (2002) The Vitamins. In: Hardy JE, Halver R (eds) Fish Nutrition, 3rd edn. Academic Press, San Diego, pp 61–141
Google Scholar
Palacios C (2006) The role of nutrients in bone health, from A to Z. Crit Rev Food Sci Nutr 46:621–628. https://doi.org/10.1080/10408390500466174
CAS
Article
PubMed
Google Scholar
Nguyen VT, Satoh S, Haga Y et al (2008) Effect of zinc and manganese supplementation in Artemia on growth and vertebral deformity in red sea bream (Pagrus major) larvae. Aquaculture 285:184–192. https://doi.org/10.1016/j.aquaculture.2008.08.030
CAS
Article
Google Scholar
Terova G, Rimoldi S, Izquierdo M, Pirrone C, Ghrab W, Bernardini G (2018) Nano-delivery of trace minerals for marine fish larvae: influence on skeletal ossification, and the expression of genes involved in intestinal transport of minerals, osteoblast differentiation, and oxidative stress response. Fish Physiol Biochem 44:1375–1391. https://doi.org/10.1007/s10695-018-0528-7
CAS
Article
PubMed
Google Scholar
Izquierdo MS, Ghrab W, Roo J et al (2016) Organic, inorganic and nanoparticles of Se, Zn and Mn in early weaning diets for gilthead seabream (Sparus aurata; Linnaeus, 1758). Aquac Res 48:1–16. https://doi.org/10.1111/are.13119
CAS
Article
Google Scholar
Gansner JM, Mendelsohn BA, Hultman KA, Johnson SL, Gitlin JD (2007) Essential role of lysyl oxidases in notochord development. Dev Biol 307:202–213. https://doi.org/10.1016/j.ydbio.2007.04.029
CAS
Article
PubMed
PubMed Central
Google Scholar
Apines-Amar MJS, Satoh S, Caipang CMA et al (2004) Amino acid-chelate: a better source of Zn, Mn and Cu for rainbow trout, Oncorhynchus mykiss. Aquaculture 240:345–358. https://doi.org/10.1016/j.aquaculture.2004.01.032
CAS
Article
Google Scholar
Paripatananont T, Lovell RT (1997) Comparative net absorption of chelated and inorganic trace minerals in channel catfish Ictalurus punctatus diets. J World Aquacult Soc 28:62–67. https://doi.org/10.1111/j.1749-7345.1997.tb00962.x
Article
Google Scholar
Katya K, Lee S, Bharadwaj AS et al (2016) Effects of inorganic and chelated trace mineral (Cu, Zn, Mn and Fe) premixes in marine rockfish, Sebastes schlegeli (Hilgendorf), fed diets containing phytic acid. Aquac Res 48:1–9. https://doi.org/10.1111/are.13236
CAS
Article
Google Scholar
Pombinho AR, Laizé V, Molha DM, Marques SM, Cancela ML (2004) Development of two bone-derived cell lines from the marine teleost Sparus aurata; evidence for extracellular matrix mineralization and cell-type-specific expression of matrix Gla protein and osteocalcin. Cell Tissue Res 315:393–406. https://doi.org/10.1007/s00441-003-0830-1
CAS
Article
PubMed
Google Scholar
Prabhu PAJ, Schrama JW, Mariojouls C et al (2014) Post-prandial changes in plasma mineral levels in rainbow trout fed a complete plant ingredient based diet and the effect of supplemental di-calcium phosphate. Aquaculture 430:1–10. https://doi.org/10.1016/j.aquaculture.2014.03.038
CAS
Article
Google Scholar
Domínguez D, Rimoldi S, Robaina LE, Torrecillas S, Terova G, Zamorano MJ, Karalazos V, Hamre K, Izquierdo M (2017) Inorganic, organic, and encapsulated minerals in vegetable meal based diets for Sparus aurata (Linnaeus, 1758). PeerJ 5:e3710. https://doi.org/10.7717/peerj.3710
CAS
Article
PubMed
PubMed Central
Google Scholar
Viegas MN, Dias J, Cancela ML, Laizé V (2012) Polyunsaturated fatty acids regulate cell proliferation, extracellular matrix mineralization and gene expression in a gilthead seabream skeletal cell line. J Appl Ichthyol 28:427–432. https://doi.org/10.1111/j.1439-0426.2012.01994.x
CAS
Article
Google Scholar
Tan F, Wang M, Wang W, Lu Y (2008) Comparative evaluation of the cytotoxicity sensitivity of six fish cell lines to four heavy metals in vitro. Toxicol in Vitro 22:164–170. https://doi.org/10.1016/j.tiv.2007.08.020
CAS
Article
PubMed
Google Scholar
Clearwater SJ, Farag AM, Meyer JS (2002) Bioavailability and toxicity of dietborne copper and zinc to fish. Comp Biochem Physiol - C Toxicol Pharmacol 132:269–313. https://doi.org/10.1016/S1532-0456(02)00078-9
Article
PubMed
Google Scholar
Domínguez D, Sarmiento P, Sehnine Z et al (2019) Effects of copper levels in diets high in plant ingredients on gilthead sea bream (Sparus aurata) fingerlings. Aquaculture 507:466–474. https://doi.org/10.1016/j.aquaculture.2019.04.044
CAS
Article
Google Scholar
Arigony ALV, de Oliveira IM, Machado M et al (2013) The influence of micronutrients in cell culture: a reflection on viability and genomic stability. Biomed Res Int 2013:1–22
Article
Google Scholar
Li S, Wang M, Chen X, Li SF, Li-Ling J, Xie HQ (2014) Inhibition of osteogenic differentiation of mesenchymal stem cells by copper supplementation. Cell Prolif 47:81–90. https://doi.org/10.1111/cpr.12083
CAS
Article
PubMed
PubMed Central
Google Scholar
Burghardt I, Lüthen F, Prinz C, Kreikemeyer B, Zietz C, Neumann HG, Rychly J (2015) A dual function of copper in designing regenerative implants. Biomaterials 44:36–44. https://doi.org/10.1016/j.biomaterials.2014.12.022
CAS
Article
PubMed
Google Scholar
Rodríguez JP, Ríos S, González M (2002) Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem 85:92–100. https://doi.org/10.1002/jcb.10111
CAS
Article
PubMed
Google Scholar
Hong H-H, Pischon N, Santana RB, Palamakumbura AH, Chase HB, Gantz D, Guo Y, Uzel MI, Ma D, Trackman PC (2004) A role for lysyl oxidase regulation in the control of normal collagen deposition in differentiating osteoblast cultures. J Cell Physiol 200:53–62. https://doi.org/10.1002/jcp.10476
CAS
Article
PubMed
Google Scholar
Ashmead HD, Zunino H (1993) Factors which affect the intestinal absorbtion of minerals. In: Ashmead HD (ed) The roles of amino acid chelates in animal nutrition. Noyes Publications, New Jersey, pp 21–46
Google Scholar
Lüthen F, Bulnheim U, Müller PD, Rychly J, Jesswein H, Nebe JG (2007) Influence of manganese ions on cellular behavior of human osteoblasts in vitro. Biomol Eng 24:531–536. https://doi.org/10.1016/j.bioeng.2007.08.003
CAS
Article
PubMed
Google Scholar
Hallab NJ, Vermes C, Messina C, Roebuck KA, Glant TT, Jacobs JJ (2002) Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts. J Biomed Mater Res 60:420–433. https://doi.org/10.1002/jbm.10106
CAS
Article
PubMed
Google Scholar
Miola M, Vitale C, Maina G et al (2014) In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater Sci Eng C 38:107–118. https://doi.org/10.1016/j.msec.2014.01.045
CAS
Article
Google Scholar
Bracci B, Torricelli P, Panzavolta S, Boanini E, Giardino R, Bigi A (2009) Effect of Mg2+, Sr2+ , and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem 103:1666–1674. https://doi.org/10.1016/j.jinorgbio.2009.09.009
CAS
Article
PubMed
Google Scholar
Zafar N, Khan MA (2019) Growth, feed utilization, mineralization and antioxidant response of stinging catfish Heteropneustes fossilis fed diets with different levels of manganese. Aquaculture 509:120–128. https://doi.org/10.1016/j.aquaculture.2019.05.022
CAS
Article
Google Scholar
Callaway DA, Jiang JX (2015) Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 33:359–370. https://doi.org/10.1007/s00774-015-0656-4
CAS
Article
PubMed
Google Scholar
Arai M, Shibata Y, Pugdee K, Abiko Y, Ogata Y (2007) Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells. IUBMB Life 59:27–33. https://doi.org/10.1080/15216540601156188
CAS
Article
PubMed
Google Scholar
Murphy CB, Martell AE (1957) Metal chelates of glycine and glycine peptides. J Biol Chem 226:37–50
CAS
PubMed
Google Scholar
Nagata M, Lönnerdal B (2011) Role of zinc in cellular zinc trafficking and mineralization in a murine osteoblast-like cell line. J Nutr Biochem 22:172–178. https://doi.org/10.1016/j.jnutbio.2010.01.003
CAS
Article
PubMed
Google Scholar
Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11:119–135. https://doi.org/10.1002/(SICI)1520-670X(1998)11:2/3<119::AID-JTRA5>3.0.CO;2-3
Sauer GR, Adkisson HD, Genge BR, Wuthier RE (1989) Regulatory effect of endogenous zinc and inhibitory action of toxic metal ions on calcium accumulation by matrix vesicles in vitro. Bone Miner 7:233–244. https://doi.org/10.1016/0169-6009(89)90080-9
CAS
Article
PubMed
Google Scholar
Togari A, Arakawa S, Arai M, Matsumoto S (1993) Alteration of in vitro bone metabolism and tooth formation by zinc. Gen Pharmacol Vasc Syst 24:1133–1140. https://doi.org/10.1016/0306-3623(93)90360-A
CAS
Article
Google Scholar
LeGeros RZ, Bleiwas C, Retino M, Rohanizadeh R, LeGeros J (1999) Zinc effect on the in vitro formation of calcium phosphates: Relevance to clinical inhibition of calculus formation. Am J Dent 12:65–71
CAS
PubMed
Google Scholar
Hamre K, Yúfera M, Rønnestad I et al (2013) Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Rev Aquac 5:S26–S58. https://doi.org/10.1111/j.1753-5131.2012.01086.x
Article
Google Scholar
Haley TJ, Flesher AM (1946) A toxicity study of thiamine hydrochloride. Science 104:567–568
CAS
Article
Google Scholar
Waagbø R (2010) Water-soluble vitamins in fish ontogeny. Aquac Res 41:733–744. https://doi.org/10.1111/j.1365-2109.2009.02223.x
CAS
Article
Google Scholar
Alvarez OM, Gilbreath RL (1982) Thiamine influence on collagen during the granulation of skin wounds. J Surg Res 32:24–31. https://doi.org/10.1016/0022-4804(82)90180-9
CAS
Article
PubMed
Google Scholar
Mccormick RJ (1989) The influence of nutrition on collagen metabolism and stability. Reciprocal Meat Conf Proc 42:137–148
Google Scholar
Vrolijk MF, Opperhuizen A, Jansen EHJM et al (2017) The vitamin B6 paradox: supplementation with high concentrations of pyridoxine leads to decreased vitamin B6 function. Toxicol in Vitro 44:206–212. https://doi.org/10.1016/j.tiv.2017.07.009
CAS
Article
PubMed
Google Scholar
Molina A, Oka T, Muñoz SM et al (1997) Vitamin B6 suppresses growth and expression of albumin gene in a human hepatoma cell line HepG2. Nutr Cancer 28:206–211. https://doi.org/10.1080/01635589709514576
CAS
Article
PubMed
Google Scholar
DiSorbo DM, Litwack G (1981) Vitamin B6 kills hepatoma cells in culture. Nutr Cancer 3:216–222. https://doi.org/10.1080/01635588109513725
Article
Google Scholar
Herrmann M, Umanskaya N, Wildemann B et al (2007) Accumulation of homocysteine by decreasing concentrations of folate, vitamin B12 and B6 does not influence the activity of human osteoblasts in vitro. Clin Chim Acta 384:129–134. https://doi.org/10.1016/j.cca.2007.06.016
CAS
Article
PubMed
Google Scholar
Murray JC, Levene CI (1977) Evidence for the role of vitamin B-6 as a cofactor of lysyl oxidase. Biochem J 167:463–467. https://doi.org/10.1042/bj1670463
CAS
Article
PubMed
PubMed Central
Google Scholar
Fedde KN, Lane CC, Whyte MP (1988) Alkaline phosphatase is an ectoenzyme that acts on micromolar concentrations of natural substrates at physiologic pH in human osteosarcoma (SAOS-2) cells. Arch Biochem Biophys 264:400–409. https://doi.org/10.1016/0003-9861(88)90305-0
CAS
Article
PubMed
Google Scholar
Dodds RA, Catterall A, Bitensky L, Chayen J (1986) Abnormalities in fracture healing induced by vitamin B6-deficiency in rats. Bone 7:489–495. https://doi.org/10.1016/8756-3282(86)90008-6
CAS
Article
PubMed
Google Scholar
Rafael MS, Marques CL, Parameswaran V et al (2010) Fish bone-derived cell lines: an alternative in vitro cell system to study bone biology. J Appl Ichthyol 26:230–234. https://doi.org/10.1111/j.1439-0426.2010.01411.x
Article
Google Scholar