Skip to main content

Advertisement

Log in

Trace Elements and Fatty Acid Profile of Argyrosomus regius (Asso, 1801) from Mediterranean Aquaculture

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although Argyrosomus regius (Asso, 1801) counts among the most appreciated and increasingly consumed fish species in Europe, little information is available on its flesh quality. This research concerns both healthy aquatic resource diversification and good nutritional quality. It is the first study to evaluate the quality of A. regius flesh from Mediterranean aquaculture. It aims to assess the concentration of 19 trace elements and to determine the fatty acid profile of this fish farmed in the Mediterranean Sea and to discuss human exposure risks. The nutritional intake of oligoelements (selenium (Se), zinc (Zn), and chromium (Cr)) and the mean concentrations of contaminants (arsenic (As), barium (Ba), cadmium (Cd), lead (Pb), and tin (Sn)) in A. regius muscles are, respectively, above and below recommended regulatory standards set by the international legislation. Additionally, the low fat content in its muscle mass and its high level of docosahexaenoic acid (C22: 6 n-3; DHA) and, to a lesser extent, eicosapentaenoic acid (C20: 5 n-3; EPA) confers satisfying nutritional qualities. This study allowed to conclude that meager can be considered as a source of seafood with good nutritional qualities for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. FAO (2018) La situation mondiale des pêches et de l’aquaculture 2018 (SOFIA): atteindre les objectifs de developpement durable. Food & Agriculture Org, Rome

    Google Scholar 

  2. FAO (2016) La situation mondiale des pêches et de l’aquaculture 2016: contribuer à la sécurité alimentaire et à la nutrition de tous. FAO, Rome (I)

  3. Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. Aquaculture 151:185–207. https://doi.org/10.1016/S0044-8486(96)01503-7

    Article  CAS  Google Scholar 

  4. Dallinger R, Prosi F, Segner H, Back H (1987) Contaminated food and uptake of heavy metals by fish: a review and a proposal for further research. Oecologia 73:91–98. https://doi.org/10.1007/BF00376982

    Article  CAS  PubMed  Google Scholar 

  5. World Health Organization (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  6. Carvalho ML, Santiago S, Nunes ML (2005) Assessment of the essential element and heavy metal content of edible fish muscle. Anal Bioanal Chem 382:426–432. https://doi.org/10.1007/s00216-004-3005-3

    Article  CAS  PubMed  Google Scholar 

  7. Cresswell T, Smith REW, Nugegoda D, Simpson SL (2014) Comparing trace metal bioaccumulation characteristics of three freshwater decapods of the genus Macrobrachium. Aquat Toxicol 152:256–263. https://doi.org/10.1016/j.aquatox.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  8. Tarley CRT, Coltro WKT, Matsushita M, de Souza NE (2001) Characteristic levels of some heavy metals from Brazilian canned sardines (Sardinella brasiliensis). J Food Compos Anal 14:611–617. https://doi.org/10.1006/jfca.2001.1028

    Article  CAS  Google Scholar 

  9. Yu M-H, Tsunoda H, Tsunoda M (2016) Environmental toxicology: biological and health effects of pollutants. CRC Press, Boca Raton

    Book  Google Scholar 

  10. García Mesa S, Suárez MD, Cervera R, et al (2014) Time course of muscle fatty acid composition of cultured meagre (Argyrosomus regius) during the first sixteen months of a cage culture. 65: https://doi.org/10.3989/gya.049813

  11. SanGiovanni JP, Chew EY (2005) The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 24:87–138. https://doi.org/10.1016/j.preteyeres.2004.06.002

    Article  CAS  PubMed  Google Scholar 

  12. Manson JE, Bassuk SS, Lee I-M et al (2012) The VITamin D and OmegA-3 TriaL (VITAL): rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease. Contemp Clin Trials 33:159–171. https://doi.org/10.1016/j.cct.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  13. Mozaffarian D, Katan MB, Ascherio A et al (2006) Trans fatty acids and cardiovascular disease. N Engl J Med 354:1601–1613. DOI. https://doi.org/10.1056/NEJMra054035

    Article  CAS  PubMed  Google Scholar 

  14. Grigorakis K, Fountoulaki E, Vasilaki A et al (2011) Lipid quality and filleting yield of reared meagre (Argyrosomus regius): lipid quality & filleting yield of reared meagre. Int J Food Sci Technol 46:711–716. https://doi.org/10.1111/j.1365-2621.2010.02537.x

    Article  CAS  Google Scholar 

  15. Kružić N, Mustać B, Župan I, Čolak S (2016) Meagre (Argyrosomus regius Asso, 1801) aquaculture in Croatia. Croat J Fish 74:14–19. https://doi.org/10.1515/cjf-2016-0003

    Article  Google Scholar 

  16. Foata J, Quilichini Y, Torres J, Pereira E, Spella MM, Mattei J, Marchand B (2009) Comparison of arsenic and antimony contents in tissues and organs of brown trout caught from the river Presa polluted by ancient mining practices and from the river Bravona in Corsica (France): a survey study. Arch Environ Contam Toxicol 57:581–589. https://doi.org/10.1007/s00244-009-9300-4

    Article  CAS  PubMed  Google Scholar 

  17. Costa S, Afonso C, Bandarra NM et al (2013) The emerging farmed fish species meagre (Argyrosomus regius): how culinary treatment affects nutrients and contaminants concentration and associated benefit-risk balance. Food Chem Toxicol 60:277–285. https://doi.org/10.1016/j.fct.2013.07.050

    Article  CAS  PubMed  Google Scholar 

  18. Monfort MC (2010) Present market situation and prospects of meagre (Argyrosomus regius), as an emerging species in Mediterranean aquaculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  19. Faliex E, Da Silva C, Simon G, Sasal P (2008) Dynamic expression of immune response genes in the sea bass, Dicentrarchus labrax, experimentally infected with the monogenean Diplectanum aequans. Fish Shellfish Immunol 24:759–767. https://doi.org/10.1016/j.fsi.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  20. Antonelli L, Foata J, Quilichini Y, Marchand B (2016) Influence of season and site location on European cultured sea bass parasites in Corsican fish farms using indicator species analysis (IndVal). Parasitol Res 115:561–568. https://doi.org/10.1007/s00436-015-4772-9

    Article  PubMed  Google Scholar 

  21. Durrieu G, Maury-Brachet R, Girardin M et al (2005) Contamination by heavy metals (Cd, Zn, Cu, and Hg) of eight fish species in the Gironde estuary (France). Estuaries 28:581–591. https://doi.org/10.1007/BF02696069

    Article  CAS  Google Scholar 

  22. Martelli R, Parisi G, Lupi P et al (2013) Effect of rearing system on body traits and fillet quality of meagre (Argyrosomus regius, Asso 1801) chilled for a short time. Ital J Anim Sci 12(4):e30. https://doi.org/10.4081/ijas.2013.e88

    Article  CAS  Google Scholar 

  23. García Mesa S, Suárez MD, Rincón Cervera MA et al (2014) Time course of muscle fatty acid composition of cultured meagre (Argyrosomus regius) during the first sixteen months of a cage culture. Grasas Aceites 65:e006. https://doi.org/10.3989/gya.049813

    Article  CAS  Google Scholar 

  24. Gobert S, Pasqualini V, Dijoux J et al (2017) Trace element concentrations in the apex predator swordfish (Xiphias gladius) from a Mediterranean fishery and risk assessment for consumers. Mar Pollut Bull 120:364–369. https://doi.org/10.1016/j.marpolbul.2017.05.029

    Article  CAS  PubMed  Google Scholar 

  25. Richir J, Luy N, Lepoint G et al (2013) Experimental in situ exposure of the seagrass Posidonia oceanica (L.) Delile to 15 trace elements. Aquat Toxicol 140–141:157–173. https://doi.org/10.1016/j.aquatox.2013.05.018

    Article  CAS  PubMed  Google Scholar 

  26. Currie LA (1999) Nomenclature in evaluation of analytical methods including detection and quantification capabilities:(IUPAC Recommendations 1995). Anal Chim Acta 391:105–126. https://doi.org/10.1016/S0003-2670(99)00104-X

    Article  CAS  Google Scholar 

  27. FAO (2008) Report of the tenth session of the Scientific Advisory Committee. General Fisheries Commission for the Mediterranean (GFCM). Nicosia, Cyprus, 22–26 October 2007.FAO Fisheries Report No. 856. Rome, FAO. pp 1–144

  28. FAO/WHO (2011) Evaluation of certain food additives and contaminants: seventy-third [73rd] report of the Joint FA

  29. European Food Safety Authority (EFSA) Panel on Contaminants in the Food Chain (CONTAM) (2011) Statement on tolerable weekly intake for cadmium. EFSA J 9(2):1975. https://doi.org/10.2903/j.efsa.2011.1975

    Article  CAS  Google Scholar 

  30. JECFA (2011) Safety evaluation of certain food additives and contaminants/prepared by the seventy-third meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); Geneva pp 305–380

  31. Song Y, Wang Y, Mao W et al (2017) Dietary cadmium exposure assessment among the Chinese population. PLoS One 12:e0177978

    Article  Google Scholar 

  32. Chamannejadian A, Sayyad G, Moezzi A, Jahangiri A (2013) Evaluation of estimated daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils. Iran J Environ Health Sci Eng 10:28. https://doi.org/10.1186/1735-2746-10-28

    Article  CAS  Google Scholar 

  33. FAO/WHO (2013) Evaluation of certain food additives and contaminants: seventy-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, Geneva

    Google Scholar 

  34. Chunhabundit R (2016) Cadmium exposure and potential health risk from foods in contaminated area, Thailand. Toxicol Res 32:65–72. https://doi.org/10.5487/TR.2016.32.1.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stefanov I, Vlaeminck B, Fievez V (2010) A novel procedure for routine milk fat extraction based on dichloromethane. J Food Compos Anal 23:852–855. https://doi.org/10.1016/j.jfca.2010.03.016

    Article  CAS  Google Scholar 

  36. Douny C, El Khoury R, Delmelle J et al (2015) Effect of storage and cooking on the fatty acid profile of omega-3 enriched eggs and pork meat marketed in Belgium. Food Sci Nutr 3:140–152. https://doi.org/10.1002/fsn3.197

    Article  CAS  PubMed  Google Scholar 

  37. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) (2010) Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J 8. https://doi.org/10.2903/j.efsa.2010.1461

  38. Food and Nutrition Board (2004) Dietary reference intakes (DRIs): recommended intakes for individuals. Inst Med US Natl Acad Wash DC

  39. Addinsoft (2019) XLSTAT statistical and data analysis solution. Long Island, NY, USA

  40. Chen M, Ma LQ, Harris WG (1999) Baseline concentrations of 15 trace elements in Florida surface soils. J Environ Qual 28:1173–1181. https://doi.org/10.2134/jeq1999.00472425002800040018x

    Article  CAS  Google Scholar 

  41. Rakocevic J, Sukovic D, Maric D (2018) Distribution and relationships of eleven trace elements in muscle of six fish species from Skadar Lake (Montenegro). Turk J Fish Aquat Sci 18:647–657. DOI. https://doi.org/10.4194/1303-2712-v18_5_01

    Article  Google Scholar 

  42. Harlioğlu AG, Yilmaz Ö, Oray IK, Aydin S (2016) A comparison of fatty acid, cholesterol and vitamin composition in sea bass [ Dicentrarchus labrax (Linnaeus, 1758)] and sea bream [ Sparus aurata (Linnaeus, 1758)] from three cage farm areas: Antalya and Muğla (Turkey) and İskele (Northern Cyprus). J Appl Ichthyol 32:577–582. https://doi.org/10.1111/jai.13036

    Article  CAS  Google Scholar 

  43. Zhang L, Zeng H, Cheng W-H (2018) Beneficial and paradoxical roles of selenium at nutritional levels of intake in health span and longevity. Free Radic Biol Med 127:3–13. https://doi.org/10.1016/j.freeradbiomed.2018.05.067

    Article  CAS  PubMed  Google Scholar 

  44. Bodin N, Lesperance D, Albert R et al (2017) Trace elements in oceanic pelagic communities in the western Indian Ocean. Chemosphere 174:354–362. https://doi.org/10.1016/j.chemosphere.2017.01.099

    Article  CAS  PubMed  Google Scholar 

  45. Chaguri MP, Maulvault AL, Costa S et al (2017) Chemometrics tools to distinguish wild and farmed meagre (Argyrosomus regius ). J Food Process Preserv 41:e13312. https://doi.org/10.1111/jfpp.13312

    Article  CAS  Google Scholar 

  46. Orban E, Nevigato T, Lena GD et al (2003) Differentiation in the lipid quality of wild and farmed seabass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata). J Food Sci 68:128–132. https://doi.org/10.1111/j.1365-2621.2003.tb14127.x

    Article  CAS  Google Scholar 

  47. Korbas M, MacDonald TC, Pickering IJ et al (2011) Chemical form matters: differential accumulation of mercury following inorganic and organic mercury exposures in zebrafish larvae. ACS Chem Biol 7:411–420. https://doi.org/10.1021/cb200287c

    Article  CAS  PubMed  Google Scholar 

  48. Mieiro C, Ahmad I, Pereira M et al (2010) Antioxidant system breakdown in brain of feral golden grey mullet (Liza aurata) as an effect of mercury exposure. Ecotoxicology 19:1034–1045

    Article  CAS  Google Scholar 

  49. Coccini T, Randine G, Candura SM et al (2000) Low-level exposure to methylmercury modifies muscarinic cholinergic receptor binding characteristics in rat brain and lymphocytes: physiologic implications and new opportunities in biologic monitoring. Environ Health Perspect 108:29–33. https://doi.org/10.1289/ehp.0010829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Di Lena G, Casini I, Caproni R et al (2017) Total mercury levels in commercial fish species from Italian fishery and aquaculture. Food Addit Contam Part B 10:118–127. https://doi.org/10.1080/19393210.2017.1281353

    Article  CAS  Google Scholar 

  51. Afonso C, Costa S, Cardoso C et al (2015) Evaluation of the risk/benefit associated to the consumption of raw and cooked farmed meagre based on the bioaccessibility of selenium, eicosapentaenoic acid and docosahexaenoic acid, total mercury, and methylmercury determined by an in vitro digestion model. Food Chem 170:249–256. https://doi.org/10.1016/j.foodchem.2014.08.044

    Article  CAS  PubMed  Google Scholar 

  52. Sampaio E, Lopes AR, Francisco S et al (2018) Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius). Sci Total Environ 618:388–398. https://doi.org/10.1016/j.scitotenv.2017.11.059

    Article  CAS  PubMed  Google Scholar 

  53. Monfort M-C (2010) Present market situation and prospects of meagre (Argyrosomus regius), as an emerging species in Mediterranean aquaculture. Stud Rev-Gen Fish Comm Mediterr

  54. Pourang N, Nikouyan A, Dennis J (2005) Trace element concentrations in fish, surficial sediments and water from northern part of the Persian Gulf. Environ Monit Assess 109:293–316. https://doi.org/10.1007/s10661-005-6287-9

    Article  CAS  PubMed  Google Scholar 

  55. Rejomon G, Nair M, Joseph T (2010) Trace metal dynamics in fishes from the southwest coast of India. Environ Monit Assess 167:243–255. https://doi.org/10.1007/s10661-009-1046-y

    Article  CAS  PubMed  Google Scholar 

  56. Kojadinovic J, Potier M, Le Corre M et al (2007) Bioaccumulation of trace elements in pelagic fish from the Western Indian Ocean. Environ Pollut 146:548–566. https://doi.org/10.1016/j.envpol.2006.07.015

    Article  CAS  PubMed  Google Scholar 

  57. Cardoso C, Bandarra N, Lourenço H et al (2010) Methylmercury risks and EPA+ DHA benefits associated with seafood consumption in Europe. Risk Anal Int J 30:827–840. https://doi.org/10.1111/j.1539-6924.2010.01409.x

    Article  Google Scholar 

  58. Ralston NV, Ralston CR, Raymond LJ (2016) Selenium health benefit values: updated criteria for mercury risk assessments. Biol Trace Elem Res 171:262–269. https://doi.org/10.1007/s12011-015-0516-z

    Article  CAS  PubMed  Google Scholar 

  59. Navarro JC, McEvoy LA, Amat F, Sargent JR (1995) Effects of diet on fatty acid composition of body zones in larvae of the sea bass Dicentrarchus labrax: a chemometric study. Mar Biol 124:177–183. https://doi.org/10.1007/BF00347121

    Article  CAS  Google Scholar 

  60. Hunt AÖ, Özkan F, Engin K, Tekelioğlu N (2011) The effects of freshwater rearing on the whole body and muscle tissue fatty acid profile of the European sea bass (Dicentrarchus labrax). Aquac Int 19:51–61. https://doi.org/10.1007/s10499-010-9340-9

    Article  CAS  Google Scholar 

  61. Piccolo G, Bovera F, De Riu N et al (2016) Effect of two different protein/fat ratios of the diet on meagre (Argyrosomus regius ) traits. Ital J Anim Sci 7:363–371. https://doi.org/10.4081/ijas.2008.363

    Article  Google Scholar 

  62. Orban E, Ricelli A, Paoletti F, et al (1996) Nutritional and organoleptic quality characteristics of sea bream (Sparus aurata) fillets from different rearing systems. pp 331–334

  63. Orban E, Ricelli A, Di Lena G, et al (1999) Quality differences in sea bass (Dicentrarchus labrax) from intensive and extensive rearing systems. pp 180–181

  64. Lanari D, Poli BM, Ballestrazzi R et al (1999) The effects of dietary fat and NFE levels on growing European sea bass (Dicentrarchus labrax L.). Growth rate, body and fillet composition, carcass traits and nutrient retention efficiency. Aquaculture 179:351–364. https://doi.org/10.1016/S0044-8486(99)00170-2

    Article  CAS  Google Scholar 

  65. Poli B, Parisi G, Zampacavallo G et al (2003) Preliminary results on quality and quality changes in reared meagre (Argyrosomus regius): body and fillet traits and freshness changes in refrigerated commercial-size fish. Aquac Int 11:301–311

    Google Scholar 

  66. Ballestrazzi R, Rainis S, Maxia M (2006) The replacement of fish oil with refined coconut oil in the diet of large rainbow trout (Oncorhynchus mykiss). Ital J Anim Sci 5:155–164. https://doi.org/10.4081/ijas.2006.155

    Article  Google Scholar 

  67. Alasalvar C, Taylor KDA, Zubcov E et al (2002) Differentiation of cultured and wild sea bass (Dicentrarchus labrax): total lipid content, fatty acid and trace mineral composition. Food Chem 79:145–150. https://doi.org/10.1016/S0308-8146(02)00122-X

    Article  CAS  Google Scholar 

  68. Gisbert E, Villeneuve L, Zambonino-Infante JL et al (2005) Dietary phospholipids are more efficient than neutral lipids for long-chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax larval development. Lipids 40:609–618. https://doi.org/10.1007/s11745-005-1422-0

    Article  CAS  PubMed  Google Scholar 

  69. Krajnović-Ozretic M, Najdek M, Ozretić B (1994) Fatty acids in liver and muscle of farmed and wild sea bass (Dicentrarchus labrax L.). Comp Biochem Physiol A Physiol 109:611–617. https://doi.org/10.1016/0300-9629(94)90200-3

    Article  Google Scholar 

  70. Fuentes A, Fernández-Segovia I, Serra JA, Barat JM (2010) Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality. Food Chem 119:1514–1518. https://doi.org/10.1016/j.foodchem.2009.09.036

    Article  CAS  Google Scholar 

  71. Valenzuela R, Echeverria F, Ortiz M, Rincón-Cervera MÁ, Espinosa A, Hernandez-Rodas MC, Illesca P, Valenzuela A, Videla LA (2017) Hydroxytyrosol prevents reduction in liver activity of Δ-5 and Δ-6 desaturases, oxidative stress, and depletion in long chain polyunsaturated fatty acid content in different tissues of high-fat diet fed mice. Lipids Health Dis 16:64–16. https://doi.org/10.1186/s12944-017-0450-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Petursdottir AL, Farr SA, Morley JE et al (2008) Effect of dietary n-3 polyunsaturated fatty acids on brain lipid fatty acid composition, learning ability, and memory of senescence-accelerated mouse. J Gerontol A Biol Sci Med Sci 63:1153–1160. https://doi.org/10.1093/gerona/63.11.1153

    Article  PubMed  Google Scholar 

  73. Martelli R, Zotte AD, Bonelli A et al (2013) Macronutrient and fatty acid profiles of meagre (Argyrosomus regius) fillets as influenced by harvesting time and boiling. 9. https://doi.org/10.4081/ijas.2013.e30

  74. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379. https://doi.org/10.1016/S0753-3322(02)00253-6

    Article  CAS  PubMed  Google Scholar 

  75. Takahashi M, Ando J, Shimada K et al (2017) The ratio of serum n-3 to n-6 polyunsaturated fatty acids is associated with diabetes mellitus in patients with prior myocardial infarction: a multicenter cross-sectional study. BMC Cardiovasc Disord 17. https://doi.org/10.1186/s12872-017-0479-4

  76. Directorate for Research, Studies, Assessment and Statistics of Ministry of Health (France)/ the national public health agency (2017) Report on the French Population Health, 2017. In: Executive summary: overview and highlights. DREES, Paris

    Google Scholar 

  77. Barden AE, Burke V, Mas E et al (2015) n-3 Fatty acids reduce plasma 20-hydroxyeicosatetraenoic acid and blood pressure in patients with chronic kidney disease. J Hypertens 33:1947–1953. https://doi.org/10.1097/HJH.0000000000000621

    Article  CAS  PubMed  Google Scholar 

  78. Sorice M, Tritto FP, Sordelli C et al (2015) N-3 polyunsaturated fatty acids reduces post-operative atrial fibrillation incidence in patients undergoing “on-pump” coronary artery bypass graft surgery. Monaldi Arch Chest Dis 76. https://doi.org/10.4081/monaldi.2011.196

  79. Flachs P, Rossmeisl M, Kopecky J (2014) The effect of n-3 fatty acids on glucose homeostasis and insulin sensitivity. Physiol Res 63(Suppl 1):S93–S118

    CAS  PubMed  Google Scholar 

  80. Pase MP, Grima NA, Sarris J (2011) Do long-chain n-3 fatty acids reduce arterial stiffness? A meta-analysis of randomised controlled trials. Br J Nutr 106:974–980. https://doi.org/10.1017/S0007114511002819

    Article  CAS  PubMed  Google Scholar 

  81. Villeneuve LA, Gisbert E, Moriceau J et al (2006) Intake of high levels of vitamin A and polyunsaturated fatty acids during different developmental periods modifies the expression of morphogenesis genes in European sea bass (Dicentrarchus labrax). Br J Nutr 95:677–687. https://doi.org/10.1079/BJN20051668

    Article  CAS  PubMed  Google Scholar 

  82. Grigorakis K (2007) Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: a review. Aquaculture 272:55–75. https://doi.org/10.1016/j.aquaculture.2007.04.062

    Article  Google Scholar 

Download references

Funding

This research was funded by the “Agence de l’eau Rhône Méditerranée Corse” and the “Collectivité de Corse” (CdC), as part of STARECAPMED project research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Marengo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoussou, N., Marengo, M., Durieux, E.D.H. et al. Trace Elements and Fatty Acid Profile of Argyrosomus regius (Asso, 1801) from Mediterranean Aquaculture. Biol Trace Elem Res 196, 618–628 (2020). https://doi.org/10.1007/s12011-019-01925-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01925-x

Keywords