Abstract
Magnesium (in its ionized and biologically active form, Mg2+) is an essential trace element that participates in numerous physiologic processes. Abnormal Mg2+ homeostasis can lead to many metabolic disorders, including diabetes mellitus (DM) and its complications. Mg2+ participates in energy generation and is required for DNA and RNA synthesis, reproduction, and protein synthesis. Additionally, Mg2+ acts as a calcium antagonist and protects vascular endothelial cells from oxidative stress. Imbalances in Mg2+ status, more frequently hypomagnesemia, inhibit glucose transporter type 4 translocation, increase insulin resistance, affect lipid metabolism, induce oxidative stress, and impair the antioxidant system of endothelial cells, In these ways, hypomagnesemia contributes to the initiation and progression of DM and its macrovascular and microvascular complications. In this review, we summarize recent advances in knowledge of the mechanisms whereby Mg2+ regulates insulin secretion and sensitivity. In addition, we discuss the future prospects for research regarding the mechanisms whereby Mg2+ status impacts DM and its complications.
Similar content being viewed by others
References
Gimenez-Mascarell P et al (2018) Novel aspects of renal magnesium homeostasis. Front Pediatr 6:77
Grober U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7(9):8199–8226
Zhang Y et al (2018) Association between serum magnesium and common complications of diabetes mellitus. Technol Health Care 26(S1):379–387
Palacios OM, Kramer M, Maki KC (2019) Diet and prevention of type 2 diabetes mellitus: beyond weight loss and exercise. Expert Rev Endocrinol Metab 14(1):1–12
Costello R, Wallace TC, Rosanoff A (2016) Magnesium. Adv Nutr 7(1):199–201
de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46
Jahnen-Dechent W, Ketteler M (2012) Magnesium basics. Clin Kidney J 5(Suppl 1):i3–i14
Takashina Y et al (2018) Sodium citrate increases expression and flux of Mg(2+) transport carriers mediated by activation of MEK/ERK/c-Fos pathway in renal tubular epithelial cells. Nutrients:10(10)
de Baaij JH, Hoenderop JG, Bindels RJ (2012) Regulation of magnesium balance: lessons learned from human genetic disease. Clin Kidney J 5(Suppl 1):i15–i24
Seo JW, Park TJ (2008) Magnesium metabolism. Electrolyte Blood Press 6(2):86–95
Zofkova I, Davis M, Blahos J (2017) Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol Res 66(3):391–402
Seema Abhijeet K, Jon C (2014) The current state of diabetes mellitus in India. Australas Med J 7(1):45–48
Kumar A et al (2013) India towards diabetes control: key issues. Australas Med J 6(10):524–531
Romani AM (2013) Magnesium in health and disease. Met Ions Life Sci 13:49–79
Bergman and Michael (2013) Pathophysiology of prediabetes and treatment implications for the;prevention of type 2 diabetes mellitus. Endocrine 43(3):504–513
Ramadass S, Basu S, Srinivasan AR (2015) SERUM magnesium levels as an indicator of status of diabetes mellitus type 2 ☆. Diabetes Metab Syndr 9(1):42–45
Barbagallo M et al (2014) Serum ionized magnesium in diabetic older persons. Metabolism 63(4):502–509
Barbagallo M et al (2003) Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol Asp Med 24(1):39–52
Mcnair P et al (2010) Renal hypomagnesaemia in human diabetes mellitus: its relation to glucose homeostasis. Eur J Clin Investig 12(1):81–85
Schutten JC et al (2019) Measured by nuclear magnetic resonance spectroscopy, is associated with increased risk of developing type 2 diabetes mellitus in women: results from a Dutch prospective cohort study. J Clin Med:8(2)
Ma J et al (1995) Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: the ARIC study. Atherosclerosis Risk in Communities Study. J Clin Epidemiol 48(7):927–940
Kang EY et al (2019) Association of statin therapy with prevention of vision-threatening diabetic retinopathy. JAMA Ophthalmol
Wada J, Makino H (2013) Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 124(3):139–152
Schena, F.P. and G. Loreto, Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol, 2005. 16 Suppl 1(Suppl 1): p. S30
Bherwani S et al (2017) Hypomagnesaemia: a modifiable risk factor of diabetic nephropathy. Horm Mol Biol Clin Invest 29(3):79–84
Xiang M et al (2014) Level of blood trace elements in female patients with type 2 diabetic retinopathy and its related factors analysis. China Medical Herald
Bherwani S et al (2016) Hypomagnesaemia: a modifiable risk factor of diabetic nephropathy. Horm Mol Biol Clin Invest 29(3):79–84
Prabodh, S., ., et al., Status of copper and magnesium levels in diabetic nephropathy cases: a case-control study from South India. Biol Trace Elem Res, 2011. 142(1): p. 29–35
Guerrero-Romero, F., ., et al., Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes Metab, 2004. 30(3): p. 253–258
Villegas VM, Schwartz SG (2019) Current and future pharmacologic therapies for diabetic retinopathy. Curr Pharm Des
Mahajan N, Arora P, Sandhir R (2019) Perturbed biochemical pathways and associated oxidative stress Lead to vascular dysfunctions in diabetic retinopathy. Oxidative Med Cell Longev 2019:8458472
Ozdemir G et al (2014) Rapamycin inhibits oxidative and angiogenic mediators in diabetic retinopathy. Can J Ophthalmol 49(5):443–449
Wu Y, Tang L, Chen B (2014) Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxidative Med Cell Longev 2014(14):752387
Hamdan HZ et al (2015) Serum magnesium, iron and ferritin levels in patients with diabetic retinopathy attending Makkah Eye Complex, Khartoum, Sudan. Biol Trace Elem Res 165(1):30–34
Kundu D et al (2013) Serum magnesium levels in patients with diabetic retinopathy. J Nat Sci Biol Med 4(1):113–116
Wang S et al (2013) Serum electrolyte levels in relation to macrovascular complications in Chinese patients with diabetes mellitus. Cardiovasc Diabetol 12:146
Pop-Busui R et al (2013) Impact of glycemic control strategies on the progression of diabetic peripheral neuropathy in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Cohort. Diabetes Care 36(10):3208–3215
Zhang Q et al (2018) Low serum phosphate and magnesium levels are associated with peripheral neuropathy in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 146:1–7
Boulton AJ et al (2005) The global burden of diabetic foot disease. Lancet 366(9498):1719–1724
Chen C et al (2016) Low serum magnesium levels are associated with impaired peripheral nerve function in type 2 diabetic patients. Sci Rep 6(1):32623
Crescenzo R et al (2014) Mitochondrial efficiency and insulin resistance. Front Physiol 5:512
Arfuzir NN et al (2016) Protective effect of magnesium acetyltaurate against endothelin-induced retinal and optic nerve injury. Neuroscience 325:153–164
Razzaghi R et al (2018) Magnesium supplementation and the effects on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, Placebo-Controlled Trial. Biol Trace Elem Res 181(2):207–215
Villegas R et al (2009) Dietary calcium and magnesium intakes and the risk of type 2 diabetes: the Shanghai Women’s Health Study. Am J Clin Nutr 89(4):1059–1067
Yang Y et al (2013) Primary prevention of macroangiopathy in patients with short-duration type 2 diabetes by intensified multifactorial intervention: seven-year follow-up of diabetes complications in Chinese. Diabetes Care 36(4):978–984
Agrawal P et al (2011) Association of macrovascular complications of type 2 diabetes mellitus with serum magnesium levels. Diabetes Metab Syndr Clin Res Rev 5(1):41–44
Floege J (2015) Magnesium in CKD: more than a calcification inhibitor? J Nephrol 28(3):269–277
Boulton AJ et al (2005) Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 28(4):956–962
Morakinyo AO, Samuel TA, Adekunbi DA (2018) Magnesium upregulates insulin receptor and glucose transporter-4 in streptozotocin-nicotinamide-induced type-2 diabetic rats. Endocr Regul 52(1):6–16
Liu, M., et al., Magnesium supplementation improves diabetic mitochondrial and cardiac diastolic function. JCI Insight, 2019. 4(1)
Zghoul N et al (2018) Hypomagnesemia in diabetes patients: comparison of serum and intracellular measurement of responses to magnesium supplementation and its role in inflammation. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 11:389–400
Fang, X., et al., Dose-response relationship between dietary magnesium intake and risk of type 2 diabetes mellitus: a systematic review and meta-regression analysis of prospective cohort studies. Nutrients, 2016. 8(11)
Barbagallo M, Dominguez LJ (2007) Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys 458(1):40–47
Gommers LM et al (2016) Hypomagnesemia in type 2 diabetes: a vicious circle? Diabetes 65(1):3–13
Hruby A et al (2013) Dietary magnesium and genetic interactions in diabetes and related risk factors: a brief overview of current knowledge. Nutrients 5(12):4990–5011
Jiang BH et al (1999) Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc Natl Acad Sci U S A 96(5):2077–2081
Rehman K, Akash MS (2016) Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci 23(1):87
Kostov, K., Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: focusing on the processes of insulin secretion and signaling. Int J Mol Sci, 2019. 20(6)
Khodabandehloo H et al (2016) Molecular and cellular mechanisms linking inflammation to insulin resistance and beta-cell dysfunction. Transl Res 167(1):228–256
Sohrabipour S et al (2018) Effect of magnesium sulfate administration to improve insulin resistance in type 2 diabetes animal model: using the hyperinsulinemic-euglycemic clamp technique. Fundam Clin Pharmacol 32(6):603–616
Velazquez-Villegas LA et al (2017) Recycling of glucagon receptor to plasma membrane increases in adipocytes of obese rats by soy protein; implications for glucagon resistance. Mol Nutr Food Res:61(10)
Nepton S et al (2010) Effects of administration of oral magnesium on plasma glucose and pathological changes in the aorta and pancreas of diabetic rats. Clin Exp Pharmacol Physiol 32(8):604–610
Maiese K (2015) FoxO transcription factors and regenerative pathways in diabetes mellitus. Curr Neurovasc Res 12(4):404–413
Gross DN, Wan M, Birnbaum MJ (2009) The role of FOXO in the regulation of metabolism. Current Diabetes Reports 9(3):208–214
Barooti A et al (2019) Effect of oral magnesium sulfate administration on blood glucose hemostasis via inhibition of gluconeogenesis and FOXO1 gene expression in liver and muscle in diabetic rats. Biomed Pharmacother 109:1819–1825
Voets T et al (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279(1):19–25
Nair AV et al (2012) Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy. Proc Natl Acad Sci U S A 109(28):11324–11329
Schwenk RW, Vogel H, Schurmann A (2013) Genetic and epigenetic control of metabolic health. Mol Metab 2(4):337–347
Haghvirdizadeh P et al (2015) KCNJ11: genetic polymorphisms and risk of diabetes mellitus. J Diabetes Res 2015:908152
Gribble FM et al (1998) MgATP activates the beta cell KATP channel by interaction with its SUR1 subunit. Proc Natl Acad Sci U S A 95(12):7185–7190
Zhou Q et al (2010) Neonatal diabetes caused by mutations in sulfonylurea receptor 1: interplay between expression and Mg-nucleotide gating defects of ATP-sensitive potassium channels. J Clin Endocrinol Metab 95(12):E473–E478
Wu JX et al (2018) Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels. Protein & Cell 9(6):553–567
Patel MR et al (2018) Effect of food on the pharmacokinetics of saroglitazar magnesium, a novel dual PPARalphagamma agonist, in healthy adult subjects. Clin Drug Investig 38(1):57–65
Gross B et al (2016) PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol 13:36
Kersten S, Stienstra R (2017) The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie 136:75–84
Ratman D et al (2016) Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARalpha. Nucleic Acids Res 44(22):10539–10553
O’Neill HM, Holloway GP, Steinberg GR (2013) AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol 366(2):135–151
Castiglioni S, Cazzaniga A, Maier JA (2014) Potential interplay between NFΰB and PPARÎ3 in human dermal microvascular endothelial cells cultured in low magnesium. Magnes Res 27(2):86–93
Wei CC et al (2017) Magnesium reduces hepatic lipid accumulation in yellow catfish (Pelteobagrus fulvidraco) and modulates lipogenesis and lipolysis via PPARA, JAK-STAT, and AMPK pathways in hepatocytes. J Nutr 147(6):1070–1078
Kumawat M et al (2013) Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. N Am J Med Sci 5(3):213–219
Rong G et al (2014) Resveratrol ameliorates diabetic vascular inflammation and macrophage infiltration in db/db mice by inhibiting the NF-κB pathway. Diab Vasc Dis Res 11(2):92–102
Hui Y et al (2011) Oxidative stress and diabetes mellitus. Clin Chem Lab Med 49(11):1773–1782
Sajjan NB et al (2014) Evaluation of association of serum magnesium with dyslipidaemia in diabetic nephropathy – a case control study. Natl J Med Res
Nadler JL et al (1992) Intracellular free magnesium deficiency plays a key role in increased platelet reactivity in type II diabetes mellitus. Diabetes Care 15(7):835–841
Nielsen FH (2018) Magnesium deficiency and increased inflammation: current perspectives. J Inflamm Res 11:25–34
Lin CY et al (2010) L-type calcium channels are involved in mediating the anti-inflammatory effects of magnesium sulphate. Br J Anaesth 104(1):44–51
Weglicki WB (2012) Hypomagnesemia and inflammation: clinical and basic aspects. Annu Rev Nutr 32(32):55–71
Tong I, M et al (2015) EGFR-TKI, erlotinib, causes hypomagnesemia, oxidative stress, and cardiac dysfunction: attenuation by NK-1 receptor blockade. J Cardiovasc Pharmacol 65(1):54–61
Putti R et al (2015) Skeletal muscle mitochondrial bioenergetics and morphology in high fat diet induced obesity and insulin resistance: focus on dietary fat source. Front Physiol 6:426
He X, Kan H, L, Ma Q (2009) Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. J Mol Cell Cardiol 46(1):47–58
Sifuentes-Franco S et al (2018) Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int J Endocrinol 2018:1875870
Yanhong W et al (2013) Nrf2 acts cell-autonomously in endothelium to regulate tip cell formation and vascular branching. Pnas 110(41):E3910–E3918
María S et al (2006) Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 281(21):14841–14851
Sun W et al (2018) The beneficial effects of Zn on Akt-mediated insulin and cell survival signaling pathways in diabetes. J Trace Elem Med Biol 46:117–127
Gao Y et al (2015) Effects of D-pinitol on insulin resistance through the PI3K/Akt signaling pathway in type 2 diabetes mellitus rats. J Agric Food Chem 63(26):6019–6026
Zhao Y et al (2015) The role of PTP1BO-GlcNAcylation in hepatic insulin resistance. Int J Mol Sci 16(9):22856–22869
Hur KY et al (2010) Protective effects of magnesium lithospermate B against diabetic atherosclerosis via Nrf2-ARE-NQO1 transcriptional pathway. Atherosclerosis 211(1):69–76
Gao F et al (2019) Magnesium lithospermate B protects the endothelium from inflammation-induced dysfunction through activation of Nrf2 pathway. Acta Pharmacol Sin
Yang Z et al (2000) Extracellular magnesium deficiency induces contraction of arterial muscle: role of PI3-kinases and MAPK signaling pathways. Pflugers Arch 439(3):240–247
Bhakkiyalakshmi E et al (2015) The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes. Pharmacol Res 91:104–114
Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76(76):387
Zheng Z et al (2014) The TRPM6 kinase domain determines the Mg·ATP sensitivity of TRPM7/M6 heteromeric ion channels. J Biol Chem 289(8):5217
Chubanov V et al (2016) Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. Elife 5
Gang C et al (2010) Methionine sulfoxide reductase B1 (MsrB1) recovers TRPM6 channel activity during oxidative stress. J Biol Chem 285(34):26081–26087
Simon F, Varela D, Cabello-Verrugio C (2013) Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans. Cell Signal 25(7):1614–1624
Chan KH et al (2015) Genetic variations in magnesium-related ion channels may affect diabetes risk among African American and Hispanic American women. J Nutr 145(3):418–424
Song Y et al (2009) Common genetic variants of the ion channel transient receptor potential membrane melastatin 6 and 7 (TRPM6 and TRPM7), magnesium intake, and risk of type 2 diabetes in women. BMC Med Genet 10:4
Kieboom BCT et al (2017) Serum magnesium and the risk of prediabetes: a population-based cohort study. Diabetologia 60(5):843–853
Funding
The study was financially supported by the National Natural Science Foundation of China Grant 81400725(to W. Sun), Jilin University Bethune Foundation Grant 2015201(to W. Sun), Natural Science Foundation of Jilin Province 20160101030JC (to W. Sun), and the 13th Five-Year Plan for Scientific Research of Jilin Provincial Education Department JJKH20180210KJ (to W. Sun).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Feng, J., Wang, H., Jing, Z. et al. Role of Magnesium in Type 2 Diabetes Mellitus. Biol Trace Elem Res 196, 74–85 (2020). https://doi.org/10.1007/s12011-019-01922-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12011-019-01922-0