Skip to main content
Log in

Endoplasmic Reticulum Stress Induced by Toxic Elements—a Review of Recent Developments

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Endoplasmic reticulum of all eukaryotic cells is a membrane-bound organelle. Under electron microscope it appears as parallel arrays of “rough membranes” and a maze of “smooth vesicles” respectively. It performs various functions in cell, i.e., synthesis of proteins to degradation of xenobiotics. Bioaccumulation of drugs/chemicals/xenobiotics in the cytosol can trigger ER stress. It is recognized by the accumulation of unfolded or misfolded proteins in the lumen of ER. Present review summarizes the present status of knowledge on ER stress caused by toxic elements, viz arsenic, cadmium, lead, mercury, copper, chromium, and nickel. While inorganic arsenic may induce various glucose-related proteins, i.e., GRP78, GRP94 and CHOP, XBP1, and calpains, cadmium upregulates GRP78. Antioxidants like ascorbic acid, NAC, and Se inhibit the expression of UPR. Exposure to lead also changes ER stress related genes, i.e., GRP 78, GRP 94, ATF4, and ATF6. Mercury too upregulates these genes. Nickel, a carcinogenic element upregulates the expression of Bak, cytochrome C, caspase-3, caspase-9, caspase-12, and GADD 153. Much is not known on ER stress caused by nanoparticles. The review describes inter-organelle association between mitochondria and ER. It also discusses the interdependence between oxidative stress and ER stress. A cross talk amongst different cellular components appears essential to disturb pathways leading to cell death. However, these molecular switches within the signaling network used by toxic elements need to be identified. Nevertheless, ER stress especially caused by toxic elements still remains to be an engaging issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

ER stress:

Endoplasmic reticulum stress

UPR:

Unfolded protein response

IRE1:

Inositol requiring kinase 1

elf2alpha:

Initiation factor 2 alpha

PERK:

PKR-like kinase

ATF:

Activating transcription factor

Bip:

Binding protein

GRP78:

Glucose-regulated protein 78

ERAD:

ER-associated degradation

PDI:

Protein disulfide isomerise

ROS:

Reactive oxygen species

FAD:

Flavin adenine nucleotide

ERO1:

Endoplasmic reticulum oxidoreduction 1

ATO:

Arsenic trioxide

GRP94:

Glucose-related protein 94

CHOP:

C/EBP homologous protein

XBP1:

X-box binding protein

GSIS:

Glucose-stimulated insulin secretion

GJIC:

Gap junctional intercellular communication

NOX4:

NADPH oxidase 4

MFO:

Mixed function oxidase

NAC:

N-acetyl cysteine

Se:

Selenium

References

  1. Griffiths G, Warren G, Quinn P, Mathieu-Castello O, Hoppeler H (1984) Density of newly synthesized plasma membrane proteins in intracellular membranes. I.stereological studies. J Cell Biol 98:2133–2141

    Article  CAS  PubMed  Google Scholar 

  2. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  3. Oakes SA, Papa FR (2015) The role of endoplasmic stress in human pathology. Annu Rev Pathol 10:173–194

    Article  CAS  PubMed  Google Scholar 

  4. Marisa R, Andreia MJAR, Evelina G, Philippe P (2018) At the crossway of ER stress and proinflammatory responses. FEBS J. https://doi.org/10.1111/febs.14391

  5. Rutkowski DT, Hegde RS (2010) Regulation of basal cellular physiology by the homeostatic unfolded protein response. J Cell Biol 189:783–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Henne WM, Zhu L, Balagi Z, Stefan C, Pleiss JA, Ehr SD (2015) Mdm1/Snx13 is a novel ER-endolysosomal interorganelle tethering protein. J Cell Biol 210:541–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang M, Kaufman RJ (2014) The impact of the endoplasmic reticulum protein folding environment on cancer development. Nat Rev Cancer 14:581–597

    Article  CAS  PubMed  Google Scholar 

  8. Malhi H, Kaufman RJ (2011) Endoplasmic reticulum stress in liver diseases. J Hepatol 54:795–809

    Article  CAS  PubMed  Google Scholar 

  9. Cnop M, Foufelle F, Velloso LA (2012) Endoplasmic stress, obesity and diabetes. Trends Mol Med 18:59–68

    Article  CAS  PubMed  Google Scholar 

  10. Cheng B, Gong H, Xiao H, Peterson RB, Zheng L, Huang K (2013) Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases. Biochim Biophys Acta 1830:4860–4871

    Article  CAS  PubMed  Google Scholar 

  11. Chen S, Melchior WB Jr, Guo L (2014) Endoplasmic reticulum stress in drug and environmental toxicant – induced liver toxicity. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 32:83–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Byrd AE, Brewer JW (2012) Intricately regulated: a cellular tool box for fine tuning XBP1 expression and activity. Cells 1:738–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, Arnold SM (2002) The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 3:411–421

    Article  CAS  PubMed  Google Scholar 

  14. Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signalling in disease. Physiol Rev 86:1133–1149

    Article  CAS  PubMed  Google Scholar 

  15. Martins AS, Alves I, Helgureo L, Dominiques MR, Neves BM (2016) The unfolded protein response in homeostasis and modulation of mammalian immune cells. Int Rev Immunol 35:457–476

    Article  CAS  PubMed  Google Scholar 

  16. Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12:703–719

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197:857–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hotamisligil GS (2010) Endoplasmic reticulum stress and atherosclerosis. Nat Med 16:396–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K (2008) ATF6 is a transcription factor for specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struc Func 33:75–89

    Article  CAS  Google Scholar 

  20. Walter P, Ron D (2011) The unfolded protein response from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  21. Volmer R, van der Ploeg K, Ron D (2013) Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Natl Acad Sci USA 110:4628–4633

    Article  CAS  PubMed  Google Scholar 

  22. Hetz C, Papa FR (2018) The unfolded protein response and cell fate control. Mol Cell 68:169–181

    Article  CAS  Google Scholar 

  23. Ellgaard L, Rudduck LW (2005) The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 6:28–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Braakman I, Bulleid NJ (2011) Protein folding and modification in the mammalian endoplasmic reticulum. Ann Rev Biochem 80:71–79

    Article  CAS  PubMed  Google Scholar 

  25. Kramer B, Ferrari DM, Klapha P, Pohlmann N, Soling HD (2001) Functional roles and efficiencies of the thioredoxin boxes of calcium binding proteins, 1 and 2 in protein folding. Biochem J 357:83–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carelli S, Ceriotti A, Cabibbo A, Fassina G, Ruvo M, Sitia R (1997) Cysteine and glutathione secretion in response to protein disulfide bond formation in the ER. Science 277:1681–1694

    Article  CAS  PubMed  Google Scholar 

  27. Frend AR, Kaiser CA (1998) ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell 1:161–170

    Article  Google Scholar 

  28. Pollard MG, Traves KJ, Weissman JS (1998) ERO1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell 1:171–182

    Article  CAS  PubMed  Google Scholar 

  29. Laurindo FR, Pestacore LA, Fernandes Dde C (2012) Protein disulfide isomerase in redox cell signalling and homeostasis. Free Rad Bio Med 52:1954–1969

    Article  CAS  Google Scholar 

  30. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and Consequences. J Cell Bio 164:341–346

    Article  CAS  Google Scholar 

  31. Kleniewska P, Piechota A, Skibska B, Goraca A (2012) The NADPH oxidase family and its inhibitors. Arch Immunol Ther Exp 60:277–294

    Article  CAS  Google Scholar 

  32. Janiszewski M, Lopes LR, Carmo AO, Pedro MA, Brandes RP, Santos CX, Laurindo FR (2005) Regulation of NAD(P)H oxidase by associated protein disulfide isomerase in vascular smooth muscle cells. J Biol Chem 280:40813–40819

    Article  CAS  PubMed  Google Scholar 

  33. Santos CX, Stolf BS, Takemoto PV, Amanso AM, Lopes LR, Souza EB, Goto H, Laurindo FR (2009) Protein disulfide isomerase (PDI) associates with NADPH oxidase and is required for phagocytosis of Leishmania chagasi promastigotes by macrophages. J Leukoc Biol 86:989–998

    Article  CAS  PubMed  Google Scholar 

  34. Santos CX, Tanaka LY, Wosniak J, Laurindo FR (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxido-reductase, mitochondrial electron transport and NADPH oxidase. Antioxid Redox Signal 11:2409–2427

    Article  CAS  PubMed  Google Scholar 

  35. Chakravarthi S, Bulleid MJ (2004) Glutathione is required to regulate the formation of native disulfide bonds within proteins entering the secretory pathway. J Biol Chem 279:39872–39879

    Article  CAS  PubMed  Google Scholar 

  36. Haynes CM, Titus EA, Cooper A (2004) Degradation of misfolded proteins prevents ER derived oxidative stress and cell death. Mol Cell 15:767–776

    Article  CAS  PubMed  Google Scholar 

  37. Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe SW, Kaufman RJ (2008) Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Nat Aca Sci USA 105:18525–18530

    Article  CAS  Google Scholar 

  38. Reimann D, Dachs D, Meye C, Gross P (2004) Amino acid based peritoneal dialysis solution stimulates mesothelial nitric oxide production. Perit Dial Int 24:378–384

    Article  CAS  PubMed  Google Scholar 

  39. Davydov DR (2001) Microsomal monooxygenase in apoptosis. Another target for cytochrome C signalling? Trends Biochem Sci 26:155–160

    Article  CAS  PubMed  Google Scholar 

  40. Nieto N, Friedman SL, Cederbaum AI (2002) Stimulation and proliferation of primary rat hepatic stellate cells by cytochrome p4502E1 derived reactive oxygen species. Hepatology 35:62–73

    Article  CAS  PubMed  Google Scholar 

  41. Gong P, Cederbaum AI (2006) Nrf2 is increased by CYP2E1 in rodent liver and Hep G2 cells and protects against oxidative stress caused by CYP2E1. Hepatology 43:144–153

    Article  CAS  PubMed  Google Scholar 

  42. Kim HR, Lee GH, Cho EY, Chae SW, Ahn T, Chae HJ (2009) Bax inhibitor 1 regulates ER stress induced ROS accumulation through the regulation of CYP4502E1. J Cell Sci 122:1126–1133

    Article  CAS  PubMed  Google Scholar 

  43. Bhandari B, Marahatta A, Kim HR, Chae HJ (2012) An involvement of oxidative stress in endoplasmic stress and its associated diseases. Int J Mol Sci 14:434–456

    Article  CAS  Google Scholar 

  44. Patergnani S, Suski JM, Agnoletto C, Bononi S, Missiroli S, Poletti F et al (2011) Calcium signalling around mitochondria associated membranes (MAMs). Cell Commun Signal 9:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marchi S, Pattergnani S, Pinton P (2014) The edoplasmic reticulum mitochondria connection: one touch multiple functions. Biochim Biophys Acta 1837:461–469

    Article  CAS  PubMed  Google Scholar 

  46. Michalak M, Robert Parker JM, Opas M (2002) Ca2+ signalling and binding chaperones of the endoplasmic reticulum. Cell Calcium 32:269–278

    Article  CAS  PubMed  Google Scholar 

  47. NRC (1999) Arsenic in drinking water. National Academy Press, Washington D C, p 310

    Google Scholar 

  48. Nemeti B, Gregus Z (2007) Glutathione dependent reduction of arsenate by glycogen phosphorylase a reaction coupled to glycogenolysis. Toxicol Sci 100:36–43

    Article  CAS  PubMed  Google Scholar 

  49. Binet F, Chiasson S, Girard D (2010) Arsenic trioxide induces endoplasmic reticulum stress-related events in neutrophils. Int Immunopharmacol 19:508–512

    Article  CAS  Google Scholar 

  50. Lu TH, Su CC, Chen YW, Yang CY, Wu CC, Hung DZ, Chen CH, Cheng PW, Liu SH, Huang CF (2011) Arsenic induces pancreatic B cell apoptosis via the oxidative stress regulated mitochondria dependent and endoplasmic reticulum stress triggered signalling pathways. Toxicol Lett 201:15–26

    Article  CAS  PubMed  Google Scholar 

  51. King YA, Chiu YZ, Chen HP, Kuo DHLCC, Yang JS (2016) Endoplasmic reticulum stress contributes to arsenic trioxide induced intrinsic apoptosis in human umbilical and bone marrow mesenchymal stem cells. Environ Toxicol 31:314–328

    Article  CAS  PubMed  Google Scholar 

  52. Naranmandura H, Xu S, Koike S, Pan LQ, Chen B, Wang YVV, Rehman K, Wu B, Chen Z, Suzuki N (2012) The endoplasmic reticulum is a target organelle for trivalent dimethylarsinic acid (DMA III) induced cytotoxicity. Toxicol Applied Pharmacol 260:241–249

    Article  CAS  Google Scholar 

  53. Wu W, Yao X, Jiang L, Zhang Q, Bai J, Qu T, Yang L, Gao N, Yang G, Liu K, Chen M, Sun X (2018) Pancreatic islet autonomous effect of arsenic on insulin secretion through endoplasmic reticulum stress-autophagy pathway. Food Chem Toxicol 111:19–26

    Article  CAS  PubMed  Google Scholar 

  54. Li M, Xia T, Jiang CS, Li LJ, Fu JL, Zhou ZC (2003) Cadmium directly induced the opening of membrane permeability transition pore of mitochondria, which possibly involved in cadmium triggered apoptosis. Toxicology 194:19–33

    Article  CAS  PubMed  Google Scholar 

  55. Lopez E, Figueroa S, Oset-Gasque J, Gonzalez MP (2003) Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurones in culture. Br J Pharmacol 138:901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jimi S, Uchiyama M, Takaki A, Suzmiya J, Hara S (2004) Mechanisms of cell death induced by cadmium and arsenic. An NY Acad Sci 1011:325–331

    Article  CAS  Google Scholar 

  57. Kitamura M, Hiramatsu N (2010) The oxidative stress: endoplasmic reticulum stress axis in cadmium toxicity. Biometals 23:941–950

    Article  CAS  PubMed  Google Scholar 

  58. Gardarin A, Chedin S, Lagniel G, Aude JC, Godet E, Catty P, Labarre J (2010) Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol Microbiol 76:1034–1048

    Article  CAS  PubMed  Google Scholar 

  59. Chen CY, Zhang SL, Liu ZY, Tian Y, Sun Q (2015) Cadmium toxicity induces ER Stress and apoptosis via impairing energy homeostasis in cardiomyocytes. Biosci Rep doi. https://doi.org/10.1042/BSR20140170

  60. Shao CC, Li N, Zhang ZW, Su J, Li JL, Xu SW (2014) Cadmium supplement triggers endoplasmic reticulum stress response and cytotoxicity in primary chicken hepatocytes. Ecotoxico Environ Saf 106:10–114

    Article  CAS  Google Scholar 

  61. Ji YL, Wang Z, Wang H, Zhang C, Zhang Y, Zhao M, Chen YH, Meng XH, Xu DX (2012) Ascorbic acid protects against cadmium induced endoplasmic reticulum stress and germ cell apoptosis in testes. Reprod Toxicol 34:357–363

    Article  CAS  PubMed  Google Scholar 

  62. Guo MY, Wang H, Chen YH, Xia MX, Zhang C, Xu DX (2018) N-acetylcysteine alleviates cadmium induced placental endoplasmic reticulum stress and fetal growth restriction in mice. PLOS One. https://doi.org/10.1371/journalpone0191667

  63. Wan N, Xu Z, Liu T, Min Y, Li S (2018) Ameliorative effects of selenium on cadmium induced injury in the chicken ovary: Mechanisms of oxidative stress and endoplasmic stress in cadmium induced apoptosis. Biol Trace Elem Res 184:463–473

    Article  CAS  PubMed  Google Scholar 

  64. Ge Z, Diao H, Ji X, Liu Q, Zhang X, Wu Q (2018) Gap junctional intercellular communication and endoplasmic reticulum stress regulate chronic cadmium exposure induced apoptosis in HK-2 cells. Toxicol Lett 288:35–43

    Article  CAS  PubMed  Google Scholar 

  65. Cao Y, Long J, Liu L, He T, Jiang L, Zhoo C, Li Z (2017) A review of endoplasmic stress and nanoparticle exposure. Life Sci 186:33–42

    Article  CAS  PubMed  Google Scholar 

  66. Corsetti G, Romano C, Stacchiotti A, Pasini F, Dioguardi FS (2017) Endoplasmic stress and apoptosis triggered by subchromic lead exposure in mice spleen a histopathological study. Biol Trace Elem Res 178:86–97

    Article  CAS  PubMed  Google Scholar 

  67. Wang X, An Y, Jiao W, Zhang Z, Han H, Gu X, Teng Y (2018) Selenium protects against lead induced apoptosis via endoplasmic reticulum stress in chicken kidneys. Biol Trace Elem Res 78:86–89

    Google Scholar 

  68. Liu CM, Yang HX, Jiao W, Zhang Z, Han H, Gu X, Tang X (2018) Role of AMPK pathway in lead induced endoplasmic reticulum stress in kidney in paeonol induced protection in mice. Food Chem Toxicol 122:87–94

    Article  CAS  PubMed  Google Scholar 

  69. Stacchiotti A, Morandini F, Bettoni F, Schena I, Lavazza A, Grigolato PG, Apostoli P, Rezzani R, Aleo MF (2009) Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead. Toxicology 264:15–24

    Article  CAS  Google Scholar 

  70. Liu W, Yang T, Xu Z, Xu B, Deng Y (2018) Methyl mercury induces apoptosis through ROS mediated endoplasmic reticulum stress and mitochondrial apoptosis pathways activation in rat cortical neurones. Free Rad Res 4:1–19

    Google Scholar 

  71. Usuki F, Fujimura M, Yamashita A (2017) Endoplasmic reticulum stress preconditioning modifies intracellular mercury content by upregulating membrane transporters. Sci Rep: doi 7:1–14. https://doi.org/10.1038/S41598-017-09435-3

    Article  Google Scholar 

  72. Siraki AG, Pourahmad J, Chan TS, Khan S, O’Brien PJ (2002) Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes. Free Rad Biol Med 32:2–10

    Article  CAS  PubMed  Google Scholar 

  73. Tassabehji NM, Valandingham JW, Leverson CW (2005) Copper alters the conformational and translational activity of tumor suppressor protein p53 in human HepG2 cells. Exp Biol Med 230:699–708

    Article  CAS  Google Scholar 

  74. Rana SVS, Verma S (1997) Protective effects of GSH, tocopherol and selenium on lipid peroxidationin liver and kidney of copper fed rats. Bull Environ Cont Toxicol 59:152–158

    Article  CAS  Google Scholar 

  75. Oe S, Miyagawa K, Honma Y, Harada M (2016) Copper induces hepatocyte injury due to endoplasmic reticulum stress in cultured cells and patients with Wilson disease. Exp Cell Res 347:192–200

    Article  CAS  PubMed  Google Scholar 

  76. Song YF, Luo Z, Zhang LH, Hogstrand C, Pan YX (2016) Endoplasmic reticulum stress and disturbed calcium homeostasis are involved in copper induced alteration in hepatic lipid metabolism in yellow catfish Peteobagrus fulvidraco. Chemosphere 144:2443–2453

    Article  CAS  PubMed  Google Scholar 

  77. Zhang Y, Xiao F, Liu X, Liu K, Zhang C (2017) Cr (VI) induces cytotoxicity in vitro through activation of ROS mediated endoplasmic reticulum stress and mitochondrial dysfunction via the P13K/Akt signalling pathway. Toxicol in vitro 41:232–244

    Article  CAS  PubMed  Google Scholar 

  78. Harris GK, Shi X (2003) Signalling by carcinogenic metals and metal induced reactive oxygen species. Mutat Res 533:183–200

    Article  CAS  PubMed  Google Scholar 

  79. Lu H, Shi X, Costa M, Huang C (2005) Carcinogenic effect of nickel compounds. Mol Cell Biochem 279:45–67

    Article  CAS  PubMed  Google Scholar 

  80. Guo H, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B, Chen K, Deng J (2016) Nickel chloride (NiCl2) induces endoplasmic reticulum (ER) stress by activation UPR pathways in the kidney of broiler chickens. Oncotarget 7:17508–17519

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhou L, Su L, Sun Y, Han A, Chang X, Zhu A, Liu F, Li J, Sun Y (2017) Nickel sulphate induced apoptosis via activation ROS dependent mitochondria and endoplasmic reticulum stress pathways in rat Leydig cells. Environ Toxicol 32:1918–1926

    Article  CAS  Google Scholar 

  82. Chang X, Liu F, Tian M, Zhao H, Han A, Sun Y (2017) Nickel oxide nanoparticles induce hepatocyte apoptosis via activating endoplasmic reticulum stress pathways in rat. Environ Toxicol 32:2492–2499

    Article  CAS  PubMed  Google Scholar 

  83. Jha R, Jha PK, Chaudhary K, Rana SVS, Guha SK (2014) An emerging interface between life science and nanotechnology, present status and prospects of reproductive health care aided by nanotechnology. Nano Reviews 5:1–19

    Article  CAS  Google Scholar 

  84. Rani V, Verma Y, Rana K, Rana SVS (2018) Zinc oxide nanoparticles inhibit dimethylnitrosamine induced liver injury in rat. Chemico Biol Interact 295:84–92

    Article  CAS  Google Scholar 

  85. Rana K, Verma Y, Rani V, Rana SVS (2018) Renal toxicity of cadmium sulphide nanoparticles in rat. Chemosphere

  86. Yang X, Shao H, Liu W, Gu W, Shu X, Mo Y, Chen X, Zhang Q, Jiang M (2015) Endoplasmic reticulum stress and oxidative stress are involved in ZnO nanoparticle induced hepatotoxicity. Toxicol Lett 234:40–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen R, Huo L, Shi X, Bai R, Zhang Z, Zhao Y, Chang Y, Chen C (2014) Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano 8:2562–2574

    Article  CAS  PubMed  Google Scholar 

  88. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin–proteasome system by protein aggregation. Science 292:1552–1555

    Article  CAS  PubMed  Google Scholar 

  89. Schaffer G, Breuer P, Boteva R, Behrands C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Harts M, Hartl FU (2004) Cellular toxicity of polyglutamine expansion proteins in non toxic oligomers. Mol Cell 15:95–105

    Article  Google Scholar 

  90. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530

    Article  CAS  PubMed  Google Scholar 

  91. Behrends C, Langer CA, Boteva R, Botteher UM, Stemp MJ, Schaffer G, Rao BV, Giese A, Kretzschmar H, Siegers K et al (2006) Chaperonin TRiC promotes the assembly of poly Q expansion proteins into non toxic oligomers. Mol Cell 23:887–897

    Article  CAS  PubMed  Google Scholar 

  92. Kaneko M (2012) Molecular pharmacological studies on the protection mechanism against endoplasmic reticulum stress induced neurodegenerative diseases. Yakugaku Zasshi 132:1437–1442

    Article  CAS  PubMed  Google Scholar 

  93. Nomura Y (2014) Pharmacological studies on neurodegenerative diseases focussing on refolding and degradation of unfolded proteins in the endoplasmic reticulum. Yakugaku Zasshi 134:537–543

    Article  CAS  PubMed  Google Scholar 

  94. Ferreiro E, Baldeiras I, Ferreira IL, Costa RO, Rego AC, Pereira CF, Oliveira CR (2012) Mitochondrial and endoplasmic reticulum associated oxidative stress in Alzheimer’s disease from pathogenesis to biomarkers. Int J Cell Biol 2012:735206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Avea-Gomez E, del Carmen Lara Castillo M, Tambini MD, Sturley SL et al (2012) Upregulated function of mitochondria associated ER membranes in Alzheimer disease. EMBO J 31:4106–4123

    Article  CAS  Google Scholar 

  96. Prusiner SB (1998) Prions. Proc Nat Acad Sci USA 95:13363–13383

    Article  CAS  PubMed  Google Scholar 

  97. Hermann US, Sonati T, Felsig J, Reimann RR, Dametto P, O’Connor T, Li B, Lau A, Hornemann S, Sorce S et al (2015) Prion infection and anti PxP antibodies trigger converging neurotoxic pathways. PLOS Pathog 11:e1004662

    Article  CAS  Google Scholar 

  98. Hetz C, Russelakis-Carneiro M, Maundrell K, Castilla J, Soto C (2003) Caspase 12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 22:5435–5445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Papa FR (2012) Endoplasmic reticulum stress, pancreatic B cell degeneration and diabetes. Cold Spring Harb Perspect Med Sept 1:2(a). https://doi.org/10.1101/cshperspect.a007666

    Article  CAS  Google Scholar 

  100. Marre ML, James EA, Piganelli JD (2015) B cell ER stress and the implications for immunogenicity in type-1 diabetes. Front Cell Dev Biol 3. https://doi.org/10.3389/cell2015.00067

  101. Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweency M, Rong JX, Kuriakose G, Fisher RA et al (2003) The endoplasmic reticulum is the site of cholesterol induced cytotoxicity in macrophages. Nat Cell Biol 5:781–792

    Article  CAS  PubMed  Google Scholar 

  102. Han S, Liang CP, DeVries-Seimon T, Ramaletta M, Welch CL, Collins-Fletcher K, Accili D, Tabas I, Tall AR (2006) Macrophage insulin receptor deficiency increases ER stress induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab 3:257–266

    Article  CAS  PubMed  Google Scholar 

  103. Horke S, Witte I, Wilgenbus P, Kruger M, Strand D, Frstermann U (2007) Paraoxonase -2 reduces oxidative stress in vascular cells and decreases endoplasmic stress induced caspase activation. Circulation 115:2055–2064

    Article  CAS  PubMed  Google Scholar 

  104. Lenin R, Maria MS, Agrawal M, Balasubramanyam M (2012) Amelioration of glucolipotoxicity induced endoplasmic reticulum stress by a “chemical chaperone” in human THP-1 monocyte. Exp Diabetes Res 2012:356487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Galligan JJ, Smathers RL, Shearn CT, Fritz KS, Backos DS, Jiang H, Franklin CC, Orlicky DJ, Maclean KN, Petersen DR (2012) Oxidative stress and ER stress response in a murine model for early stage alcoholic liver disease. J Toxicol. https://doi.org/10.1155/2012/207594

Download references

Acknowledgments

Financial support from Indian Science Congress Association, Kolkata (India), in the form of Ashutosh Mookerjee Fellowship to the author is gratefully acknowledged. The author is also thankful to the Head of the Department of Toxicology, Ch. Charan Singh University, Meerut (India), for extending the technical and administrative support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. S. Rana.

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S.V.S. Endoplasmic Reticulum Stress Induced by Toxic Elements—a Review of Recent Developments. Biol Trace Elem Res 196, 10–19 (2020). https://doi.org/10.1007/s12011-019-01903-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01903-3

Keywords

Navigation