Skip to main content
Log in

Chronic Copper Exposure Induces Hypospermatogenesis in Mice by Increasing Apoptosis Without Affecting Testosterone Secretion

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chronic copper exposure impaired spermatogenesis in adult male mice. The aim of this study was to determine whether chronic copper exposure can induce apoptosis of testicular cell and hypospermatogenesis via disturbing testosterone synthesis in adult male mice. In the present study, sixty CD-1 male mice were randomly divided into four groups, and were continuously administered for 8 weeks by oral gavage with copper sulfate at a dose of 0, 25, 100, and 150 mg/kg/day, respectively. We determined the content of serum and testicular copper, testicular coefficient, testicular histopathology, sperm count and motility, the mRNA and protein levels of Caspase-3, Bax, and Bcl-2, Leydig cell count, testosterone content, testosterone synthetase, and testosterone synthesis–related genes. The results showed that the copper levels in serum increased in a dose-dependent manner, and the copper levels in testes were significantly related to serum copper levels. Male mice given copper sulfate 100 and 150 dosage groups showed significant decreased in sperm motility and sperm number as well as increased in testes damage, and there was no significant change in testicular coefficient in the four groups. The mRNA levels of Bcl-2 decreased and Caspase-3 increased in 150 dosage group, and Bax increased in two higher dosage groups. Meanwhile, Caspase-3 and Bax proteins increased in 150 dosage group, and Bcl-2 protein decreased in three copper treatment groups. Nevertheless, there were no differences on the levels of testosterone content and testosterone synthetase of 3β-HSD, 17β-HSD, 17α-Hyd, and 20α-Hyd, mRNA levels of Cyp11a1, Cyp17a1, and Star, and quantity of Leydig cells in four groups. Overall, these data showed that chronic copper exposure led to copper residues in the testes, and the doses of 100 and 150 mg/kg/day copper sulfate may induce hypospermatogenesis by increasing apoptosis without affecting testosterone secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gaetke LM, Chow-Johnson HS, Chow CK (2014) Copper: toxicological relevance and mechanisms. Arch Toxicol 88(11):1929–1938. https://doi.org/10.1007/s00204-014-1355-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Macpherson IS, Murphy MEP (2007) Type-2 copper-containing enzymes. Cell Mol Life Sci Cmls 64(22):2887–2899

    Article  CAS  PubMed  Google Scholar 

  3. Scheiber I, Dringen R, Mercer JF (2013) Copper: effects of deficiency and overload. Met Ions Life Sci 13:359–387. https://doi.org/10.1007/978-94-007-7500-8_11

    Article  PubMed  Google Scholar 

  4. Wu H, Yang F, Li H, Li Q, Zhang F, Ba Y, Cui L, Sun L, Lv T, Wang N, Zhu J (2019) Heavy metal pollution and health risk assessment of agricultural soil near a smelter in an industrial city in China. International journal of environmental health research:1–13. https://doi.org/10.1080/09603123.2019.1584666

  5. Sodango TH, Li X, Sha J, Bao Z (2018) Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: impacts and mitigation approaches. J Health Pollut 8(17):53–70. https://doi.org/10.5696/2156-9614-8.17.53

    Article  PubMed  PubMed Central  Google Scholar 

  6. WHO (2017) Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. World Health Organization:341

  7. Cholewinska E, Ognik K, Fotschki B, Zdunczyk Z, Juskiewicz J (2018) Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS One 13(5):e0197083. https://doi.org/10.1371/journal.pone.0197083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mugford C, Gibbs JL, Boylstein R (2017) Elemental properties of copper slag and measured airborne exposures at a copper slag processing facility. J Occup Environ Hyg 14(8):D120–D129. https://doi.org/10.1080/15459624.2017.1316388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hostynek JJ (2003) Factors determining percutaneous metal absorption. Food Chem Toxicol 41(3):327–345

    Article  CAS  PubMed  Google Scholar 

  10. Agata MS, Kruczek M, Joanna K (2014) Effect of copper exposure on reproductive ability in the bank vole (Myodes glareolus). Ecotoxicology (London, England) 23(8):1546–1554

    Article  Google Scholar 

  11. Roychoudhury S, Nath S, Massanyi P, Stawarz R, Kacaniova M, Kolesarova A (2016) Copper-induced changes in reproductive functions: in vivo and in vitro effects. Physiol Res 65(1):11–22

    Article  CAS  PubMed  Google Scholar 

  12. Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55(3):178–194

    Article  PubMed  Google Scholar 

  13. Ribeiro DA, Cardoso CM, Yujra VQ, DEBV M, Aguiar O Jr, Pisani LP, CTF O (2017) Fluoride induces apoptosis in mammalian cells: in vitro and in vivo studies. Anticancer Res 37(9):4767–4777. https://doi.org/10.21873/anticanres.11883

    Article  CAS  PubMed  Google Scholar 

  14. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang J, Hu S, Rao M, Hu L, Lei H, Wu Y, Wang Y, Ke D, Xia W, Zhu CH (2017) Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats. Int J Nanomedicine 12:5959–5971. https://doi.org/10.2147/ijn.S139215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo H, Li K, Wang W, Wang C, Shen Y (2017) Effects of copper on hemocyte apoptosis, ROS production, and gene expression in white shrimp Litopenaeus vannamei. Biol Trace Elem Res 179(2):318–326. https://doi.org/10.1007/s12011-017-0974-6

    Article  CAS  PubMed  Google Scholar 

  17. Zhao D, Zhang X, Li X, Ru S, Wang Y, Yin J, Liu D (2019) Oxidative damage induced by copper in testis of the red swamp crayfish Procambarus clarkii and its underlying mechanisms. Aqua Toxicol (Amsterdam, Netherlands) 207:120–131. https://doi.org/10.1016/j.aquatox.2018.12.006

    Article  CAS  Google Scholar 

  18. Kowal M, Lenartowicz M, Pecio A, Golas A, Blaszkiewicz T, Styrna J (2010) Copper metabolism disorders affect testes structure and gamete quality in male mice. Syst Biol Reprod Med 56(6):431–444. https://doi.org/10.3109/19396361003734624

    Article  CAS  PubMed  Google Scholar 

  19. Walker WH (2011) Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis 1(2):116–120

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang Y, Su Z, Xu W, Luo J, Liang R, Xiang Q, Zhang Q, Ge RS, Huang Y (2015) Directed mouse embryonic stem cells into leydig-like cells rescue testosterone-deficient male rats in vivo. Stem Cells Dev 24(4):459–470. https://doi.org/10.1089/scd.2014.0370

    Article  CAS  PubMed  Google Scholar 

  21. Han A, Zou L, Gan X, Li Y, Liu F, Chang X, Zhang X, Tian M, Li S, Su L, Sun Y (2018) ROS generation and MAPKs activation contribute to the Ni-induced testosterone synthesis disturbance in rat Leydig cells. Toxicol Lett 290:36–45. https://doi.org/10.1016/j.toxlet.2018.03.016

    Article  CAS  PubMed  Google Scholar 

  22. Zeng Q, Zhou B, Feng W, Wang YX, Liu AL, Yue J, Li YF, Lu WQ (2013) Associations of urinary metal concentrations and circulating testosterone in Chinese men. Reprod Toxicol (Elmsford, NY) 41:109–114. https://doi.org/10.1016/j.reprotox.2013.06.062

    Article  CAS  Google Scholar 

  23. Erboga M, Kanter M, Aktas C, Bozdemir Donmez Y, Fidanol Erboga Z, Aktas E, Gurel A (2016) Anti-apoptotic and anti-oxidant effects of caffeic acid phenethyl ester on cadmium-induced testicular toxicity in rats. Biol Trace Elem Res 171(1):176–184. https://doi.org/10.1007/s12011-015-0509-y

    Article  CAS  PubMed  Google Scholar 

  24. Chang CS, Choi JB, Kim HJ, Park SB (2011) Correlation between serum testosterone level and concentrations of copper and zinc in hair tissue. Biol Trace Elem Res 144(1–3):264–271. https://doi.org/10.1007/s12011-011-9085-y

    Article  CAS  PubMed  Google Scholar 

  25. Chattopadhyay A, Sarkar M, Biswas NM (2005) Dose-dependent effect of copper chloride on male reproductive function in immature rats. Kathmandu Univ Med J (KUMJ) 3(4):392–400

    CAS  Google Scholar 

  26. Ramaswamy S, Weinbauer GF (2015) Endocrine control of spermatogenesis: role of FSH and LH/ testosterone. Spermatogenesis 4(2):e996025–e996025. https://doi.org/10.1080/21565562.2014.996025

    Article  PubMed  PubMed Central  Google Scholar 

  27. Epstein O, Spisni R, Parbhoo S, Woods B, Dormandy T (1982) The effect of oral copper loading and portasystemic shunting on the distribution of copper in the liver, brain, kidney, and cornea of the rat. Am J Clin Nutr 35(3):551–555. https://doi.org/10.1093/ajcn/35.3.551

    Article  CAS  PubMed  Google Scholar 

  28. Hebert CD, Elwell MR, Travlos GS, Fitz CJ, Bucher JR (1993) Subchronic toxicity of cupric sulfate administered in drinking water and feed to rats and mice. Fundam Appl Toxicol 21(4):461–475

    Article  CAS  PubMed  Google Scholar 

  29. Sakhaee E, Emadi L, Abshenas J, Kheirandish R, Azari O, Amiri E (2012) Evaluation of epididymal sperm quality following experimentally induced copper poisoning in male rats. J Andrologia 44(s1):110–116

    Article  Google Scholar 

  30. Huang Q, Luo L, Alamdar A, Zhang J, Liu L, Tian M, Eqani SA, Shen H (2016) Integrated proteomics and metabolomics analysis of rat testis: mechanism of arsenic-induced male reproductive toxicity. Sci Rep 6:32518. https://doi.org/10.1038/srep32518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kang Z, Qiao N, Tan Z, Tang Z, Li Y (2017) Expression patterns and changes of the LCN2 gene in the testes of induced cryptorchidism and busulfan-treated mice. Syst Biol Reprod Med 63(6):364–369. https://doi.org/10.1080/19396368.2017.1355416

    Article  CAS  PubMed  Google Scholar 

  32. Miska-Schramm A, Kruczek M, Kapusta J (2014) Effect of copper exposure on reproductive ability in the bank vole (Myodes glareolus). Ecotoxicology (London, England) 23(8):1546–1554. https://doi.org/10.1007/s10646-014-1295-6

    Article  CAS  Google Scholar 

  33. Ruwanpura SM, McLachlan RI, Meachem SJ (2010) Hormonal regulation of male germ cell development. J Endocrinol 205(2):117–131. https://doi.org/10.1677/joe-10-0025

    Article  CAS  PubMed  Google Scholar 

  34. Doguer C, Ha J-H, Collins JF (2018) Intersection of Iron and copper metabolism in the mammalian intestine and liver. Compr Physiol 8(4):1433–1461. https://doi.org/10.1002/cphy.c170045

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ha J-H, Doguer C, Collins JF (2017) Consumption of a high-iron diet disrupts homeostatic regulation of intestinal copper absorption in adolescent mice. Am J Physiol Gastrointest Liver Physiol 313(4):G535–G360. https://doi.org/10.1152/ajpgi.00169.2017

    Article  CAS  PubMed  Google Scholar 

  36. Kuo YM, Zhou B, Cosco D, Gitschier J (2001) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci U S A 98(12):6836–6841. https://doi.org/10.1073/pnas.111057298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuo YM, Gybina AA, Pyatskowit JW, Gitschier J, Prohaska JR (2006) Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J Nutr 136(1):21–26. https://doi.org/10.1093/jn/136.1.21

    Article  CAS  PubMed  Google Scholar 

  38. Lee J, Prohaska JR, Thiele DJ (2001) Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A 98(12):6842–6847. https://doi.org/10.1073/pnas.111058698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang ZW, Zhi G, Qiao N, Kang ZL, Chen ZL, Hu LM, Yang ZM, Li Y (2016) Copper-induced spermatozoa head malformation is related to oxidative damage to testes in CD-1 mice. Biol Trace Elem Res 173(2):427–432. https://doi.org/10.1007/s12011-016-0675-6

    Article  CAS  PubMed  Google Scholar 

  40. Mandil R, Rahal A, Prakash A, Garg SK, Gangwar NK, Swain DK (2016) Ameliorative potential of alpha-tocopherol against flubendiamide and copper-induced testicular-insult in Wistar rats. Chem Biol Interact 260:91–101. https://doi.org/10.1016/j.cbi.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  41. Musacco-Sebio R, Ferrarotti N, Saporito-Magrina C, Semprine J, Fuda J, Torti H, Boveris A, Repetto MG (2014) Oxidative damage to rat brain in iron and copper overloads. Metallomics 6(8):1410–1416. https://doi.org/10.1039/c3mt00378g

    Article  CAS  PubMed  Google Scholar 

  42. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87(7):1157–1180. https://doi.org/10.1007/s00204-013-1034-4

    Article  CAS  PubMed  Google Scholar 

  43. Lin J, Zhao H-S, Qin L, Li X-N, Zhang C, Xia J, Li J-L (2018) Atrazine triggers mitochondrial dysfunction and oxidative stress in quail (Coturnix C. coturnix) cerebrum via activating xenobiotic-sensing nuclear receptors and modulating cytochrome P450 systems. J Agric Food Chem 66(25):6402–6413. https://doi.org/10.1021/acs.jafc.8b01413

    Article  CAS  PubMed  Google Scholar 

  44. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2(9):647–656. https://doi.org/10.1038/nrc883

    Article  CAS  PubMed  Google Scholar 

  45. Zeng Q, Yi H, Huang L, An Q, Wang H (2018) Reduced testosterone and Ddx3y expression caused by long-term exposure to arsenic and its effect on spermatogenesis in mice. Environ Toxicol Pharmacol 63:84–91. https://doi.org/10.1016/j.etap.2018.08.012

    Article  CAS  PubMed  Google Scholar 

  46. Payne AH, Hales DB (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25(6):947–970. https://doi.org/10.1210/er.2003-0030

    Article  CAS  PubMed  Google Scholar 

  47. Zang ZJ, Fang YQ, Ji SY, Gao Y, Zhu YQ, Xia TT, Jiang MH, Zhang YN (2017) Formaldehyde inhibits sexual behavior and expression of steroidogenic enzymes in the testes of mice. J Sex Med 14(11):1297–1306. https://doi.org/10.1016/j.jsxm.2017.09.001

    Article  PubMed  Google Scholar 

  48. Barlow NJ, Phillips SL, Wallace DG, Sar M, Gaido KW, Foster PM (2003) Quantitative changes in gene expression in fetal rat testes following exposure to di(n-butyl) phthalate. Toxicol Sci 73(2):431–441. https://doi.org/10.1093/toxsci/kfg087

    Article  CAS  PubMed  Google Scholar 

  49. Khushboo M, Murthy MK, Devi MS, Sanjeev S, Ibrahim KS, Kumar NS, Roy VK, Gurusubramanian G (2018) Testicular toxicity and sperm quality following copper exposure in Wistar albino rats: ameliorative potentials of L-carnitine. Environ Sci Pollut Res Int 25(2):1837–1862. https://doi.org/10.1007/s11356-017-0624-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Key R & D Program of China [grant nos. 2016YFD0501205 and 2017YFD0502200], the National Science Foundation for Young Scientists of China [grant no. 31502131], and the Youth Teacher Award Foundation of South China Agricultural University [Provided by Guangdong Wens Dahuanong Biotechnology Co., Ltd.; grant no. 5500-A17003].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoxin Tang or Ying Li.

Ethics declarations

Animal procedures were approved by the Institutional Animal Care and Use Committee of the South China Agricultural University

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Kang, Z., Qiao, N. et al. Chronic Copper Exposure Induces Hypospermatogenesis in Mice by Increasing Apoptosis Without Affecting Testosterone Secretion. Biol Trace Elem Res 195, 472–480 (2020). https://doi.org/10.1007/s12011-019-01852-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01852-x

Keywords

Navigation