Skip to main content
Log in

Bioaccumulation of Metals in Cultured Carp (Cyprinus carpio) from Lake Chapala, Mexico

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chapala, the largest lake in Mexico, has a great potential for aquaculture and a community of some 2500 fishermen who are interested in this activity. However, diverse reports over the past two decades suggest that the fish there are contaminated with heavy metals, raising concern among consumers. Although more recent scientific studies have clarified that the metal content in the edible parts of fish is below allowable limits, the negative perception persists. The present study, therefore, was designed to evaluate the bioaccumulation of the metals Cu, Zn, Pb, As, and Cd in organs such as the muscles, liver, and gills of carp (Cyprinus carpio) cultured in Lake Chapala, and compared the results to fish cultured in a pond. Results after 473 days of monitoring showed that metal bioaccumulation in the muscles of the carp increased by 1.71, 0.50, and 12.36 μg/kg for Cu, Cd, and Pb, respectively, but Zn and As levels decreased by 7.84 and 131.7 μg/kg, respectively. The livers showed concentrations one or two times higher than the muscles in the case of Pb, Cu, Zn, and Cd. According to these results, the metal concentrations in the edible parts of these fish were below international standards for human consumption, and no significant differences were found between the bioaccumulation patterns in the muscles and livers of the carp cultured in the lake and those raised in the pond, except for Cd and Pb in the liver. Finally, no correlations were found between metal concentrations in the fish and lake sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cu:

Copper

Zn:

Zinc

Cd:

Cadmium

Pb:

Lead

As:

Arsenic

Hg:

Mercury

Exp:

Experimental group in Lake Chapala

Ctr:

Control group in inland pond

LOD:

Limits of detection

References

  1. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (2012) Carta Nacional Pesquera Mexicana. https://wwwgobmx/cms/uploads/attachment/file/153374/Carta-Nacional-Pesquera-2012pdf. Accesed 26 March 2018

  2. Moncayo-Estrada R, Lyons J, Escalera-Gallardo C, Lind OT (2012) Long-term change in the biotic integrity of a shallow tropical lake: a decadal analysis of the Lake Chapala fish community. Lake Reserv Manag 28:92–104. https://doi.org/10.1080/07438141.2012.661029

    Article  Google Scholar 

  3. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (2010) Ordenamiento acuícola en el lago de Chapala: estados de Jalisco y Michoacán. Comisión Nacional de Acuacultura y Pesca. Impreso en talleres gráficos de México, Distrito Federal, México

  4. Shine JP, Ryan DK, Ford TE (1998) Annual cycle of heavy metals in a tropical lake-Lake Chapala, Mexico. J Environ Sci Health Pt A Toxic Hazard Subst Environ Eng 33:23–43. https://doi.org/10.1080/10934529809376716

    Article  Google Scholar 

  5. Trasande L, Cortes JE, Landrigan PJ, Abercrombie MI, Bopp RF, Cifuentes E (2010) Methylmercury exposure in a subsistence fishing community in Lake Chapala, Mexico: an ecological approach. Environ Health 9:1–10. https://doi.org/10.1186/1476-069X-9-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ford TE, Ika R, Shine J, Lind LD, Lind O (2000) Trace metal concentrations in Chirostoma sp. from Lake Chapala, Mexico: elevated concentrations of mercury and public health implications. J Environ Sci Health A 35:313–325. https://doi.org/10.1080/10934520009376973

    Article  Google Scholar 

  7. Stong T, Alvarado OC, Shear H, De Anda-Sánchez J, Ramírez G, Díaz-Torres JJ (2013) Mercury concentrations in common carp (Cyprinus carpio) in Lake Chapala, Mexico: a lakewide survey. J Environ Sci Health A 48:1835–1841. https://doi.org/10.1080/10934529.2013.823340

    Article  CAS  Google Scholar 

  8. Torres Z, Mora MA, Taylor RJ, Alvarez-Bernal D, Buelna HR, Hyodo A (2014) Accumulation and hazard assessment of mercury to waterbirds at Lake Chapala, Mexico. Environ Sci Technol 48:6359–6365. https://doi.org/10.1021/es4048076

    Article  CAS  PubMed  Google Scholar 

  9. Comisión Estatal del Agua Jalisco (2016) Lago de Chapala información oficial del Lago http://www.ceajalisco.gob.mx/contenido/chapala/. Accesed 26 July 2018

  10. Spataru P, Hepher B, Halevy A (1980) The effect of the method of supplementary feed application on the feeding habits of carp (Cyprinus carpio L.) with regard to natural food in ponds. Hydrobiologia 72:171–178. https://doi.org/10.1007/BF00016244

    Article  Google Scholar 

  11. World Organization for Animal Health (OIE) (2018) Aquatic Animal Health Code 7.4.5 Killing by an overdose of an anaesthetic agent. http://www.oie.int/index.php?id=171&L=0&htmfile=chapitre_killing_farm_fish.htm. Accesed 24 June 2019

  12. NOM-033-SAG/Z00–2014 (2015) Métodos para dar muerte a los animales domésticos y silvestres. Diario Oficial de la Federación, México, http://dof.gob.mx/nota_detalle.php?codigo=5405210&fecha=26/08/2015. Accessed 26 June 2019

  13. NOM-127-SSA1–1994 (2000) Salud ambiental, agua para uso y consumo humano-Límites permisibles de calidad y tratamientos a que debe someterse el agua ara su potabilización. Diario Oficial de la Federación, México. http://www.salud.gob.mx/unidades/cdi/nom/m127ssa14.html. Accessed 26 March 2018

  14. World Health Organization WHO (2011) Guidelines for drinking-water quality, 4th edn. WHO, Gutenberg

    Google Scholar 

  15. Trujillo-Cardenas JL, Saucedo-Torres NP, del Zárate VF, Ríos-Donato N, Mendizábal E, Gómez-Salazar S (2010) Speciation and sources of toxic metals in sediments of Lake Chapala, Mexico. J Mex Chem Soc 54:79–87

    CAS  Google Scholar 

  16. Hansen A (1992) Metales pesados en el sistema Lerma-Chapala: distribución y migración. Ingeniería Hidráulica en México. http://revistatyca.org.mx/ojs/index.php/tyca/articleCms/view/681/598. Accessed 26 March 2018

  17. Gradilla SM (2013) Patrones de bioacumulación de Cu, Zn, Hg y Cd utilizando bagre como biomonitor activo en el Lago de Chapala. Master Dissertation. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C

  18. Köck G, Hofer R (1998) Origin of cadmium and lead in clear softwater lakes of high-altitude and high-latitude, and their bioavailability and toxicity to fish. In: Braunbeck T, Hinton DE, Streit B (eds) Fish ecotoxicology. Springer Basel AG, Berlin, pp 225–257

    Chapter  Google Scholar 

  19. Hansen AM, Maya P (1997) Adsorption-desorption behaviors of Pb and Cd in Lake Chapala, Mexico. Environ Int 23:553–564. https://doi.org/10.1016/S0160-4120(97)00062-7

    Article  CAS  Google Scholar 

  20. Çalta M, Canpolat Ö (2006) The comparison of three cyprinid species in terms of heavy metals accumulation in some tissues. Water Environ Res 78:548–551. https://doi.org/10.2175/106143006X99849

    Article  PubMed  Google Scholar 

  21. Skoric S, Visnjić-Jeftic Z, Jaric I, Djikanovic V, Mickovic B, Nikcevic M, Lenhardt M (2012) Accumulation of 20 elements in great cormorant (Phalacrocorax carbo) and its main prey, common carp (Cyprinus carpio) and Prussian carp (Carassius gibelio). Ecotoxicol Environ Saf 80:244–251. https://doi.org/10.1016/j.ecoenv.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  22. McGeer JC, Szebedinszky C, McDonald DG, Wood CM (2000) Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout 2: tissue specific metal accumulation. Aquat Toxicol 50:245–256. https://doi.org/10.1016/S0166-445X(99)00106-X

    Article  CAS  PubMed  Google Scholar 

  23. Cinier CC, Petit-Ramel M, Faure R, Garin D, Bouvet Y (1999) Kinetics of cadmium accumulation and elimination in carp Cyprinus carpio tissues. Comp Biochem Physiol C 122:345–352. https://doi.org/10.1016/S0742-8413(98)10132-9

    Article  Google Scholar 

  24. Has-Schön E, Bogut I, Vuković R, Galović D, Bogut A, Horvatić J (2015) Distribution and age-related bioaccumulation of lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As) in tissues of common carp (Cyprinus carpio) and European catfish (Sylurus glanis) from the Busko Blato reservoir (Bosnia and Herzegovina). Chemosphere 135:289–296. https://doi.org/10.1016/j.chemosphere.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  25. De Smet H, De Wachter B, Lobinski R, Blust R (2001) Dynamics of (Cd,Zn)-metallothioneins in gills, liver and kidney of common carp Cyprinus carpio during cadmium exposure. Aquat Toxicol 52:269–281. https://doi.org/10.1016/S0166-445X(00)00136-3

    Article  PubMed  Google Scholar 

  26. Alam MGM, Tanaka A, Allinson G, Laurenson LJB, Stagnitti F, Snow ET (2002) A comparison of trace element concentrations in cultured and wild carp (Cyprinus carpio) of Lake Kasumigaura, Japan. Ecotoxicol Environ Saf 53:348–354. https://doi.org/10.1016/S0147-6513(02)00012-X

    Article  CAS  PubMed  Google Scholar 

  27. Mahmood G (2003) Lead and nickel concentrations in fish and water of River Ravi. Pak J Biol Sci 6:1027–1029

    Article  Google Scholar 

  28. Vinodhini R, Narayanan M (2008) Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (common carp). Int J Environ Sci Technol 5:179–182. https://doi.org/10.1007/BF03326011

    Article  CAS  Google Scholar 

  29. Jovičić K, Nikolić DM, Višnjić-Jeftić Ž, Đikanović V, Skorić S, Stefanović SM, Lenhardt M, Hegediš A, Krpo-Ćetković J (2015) Mapping differential elemental accumulation in fish tissues: assessment of metal and trace element concentrations in wels catfish (Silurus glanis) from the Danube River by ICP-MS. Environ Sci Pollut Res 22:3820–3827. https://doi.org/10.1007/s11356-014-3636-7

    Article  CAS  Google Scholar 

  30. Baki AS, Dkhil MA, Al-Quraishy S (2011) Bioaccumulation of some heavy metals in tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah, Saudi Arabia. Afr J Biotechnol 10:2541–2547

    Google Scholar 

  31. Leung HM, Leung AOW, Wang HS, Ma KK, Liang Y, Ho KC, Cheung KC, Tohidi F, Yung KKL (2014) Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China. Mar Pollut Bull 78:235–245. https://doi.org/10.1016/j.marpolbul.2013.10.028

    Article  CAS  PubMed  Google Scholar 

  32. Cui B, Zhang Q, Zhang K, Liu X, Zhang H (2011) Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China. Environ Pollut 159:1297–1306. https://doi.org/10.1016/j.envpol.2011.01.024

    Article  CAS  PubMed  Google Scholar 

  33. Olsson PE, Kling P, Hogstrand C (1998) Mechanisms of heavy metal accumulation and toxicity in fish. In: Langston WJ, Bebianno MJ (eds) Metal metabolism in aquatic environments. Chapman and Hall Press, London, pp 321–350. https://doi.org/10.1007/978-1-4757-2761-6_10

    Chapter  Google Scholar 

  34. Kuz’mina VV (2011) The influence of zinc and copper on the latency period for feeding and the food uptake in common carp, Cyprinus carpio L. Aquat Toxicol 102:73–78. https://doi.org/10.1016/j.aquatox.2010.12.018

    Article  CAS  PubMed  Google Scholar 

  35. Subathra S, Karuppasamy R (2008) Bioaccumulation and depuration pattern of copper in different tissues of Mystus vittatus, related to various size groups. Arch Environ Contam Toxicol 54:236–244. https://doi.org/10.1007/s00244-007-9028-y

    Article  CAS  PubMed  Google Scholar 

  36. Murugan S, Karuppasamy R, Poongodi K, Puvaneswari S (2008) Bioaccumulation pattern of zinc in freshwater fish Channa punctatus (bloch) after chronic exposure. J Fish Aquat Sci 8:55–59

    Google Scholar 

  37. Grosell MH, Hogstrandb C, Wood CM (1997) Cu uptake and turnover in both Cu-acclimated and non-acclimated rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 38:257–276. https://doi.org/10.1016/S0166-445X(96)00843-0

    Article  CAS  Google Scholar 

  38. Clearwater SJ, Baskin SJ, Wood CM, McDonald DG (2000) Gastrointestinal uptake and distribution of copper in rainbow trout. J Exp Biol 203:2455–2466. https://doi.org/10.1007/s00244-004-0068-2

    Article  CAS  PubMed  Google Scholar 

  39. Kuzmina VV, Ushakova NV (2008) Process of exotrophy in fish. Effect of heavy metals –Zn and Cu. J Evol Biochem Physiol 44:430–439. https://doi.org/10.1134/S0022093008040030

    Article  CAS  Google Scholar 

  40. Kraemer LD, Campbell PGC, Hare L (2005) Dynamics of Cd, Cu and Zn accumulation in organs and sub-cellular fractions in field transplanted juvenile yellow perch (Perca flavescens). Environ Pollut 138:324–337. https://doi.org/10.1016/j.envpol.2005.03.006

    Article  CAS  PubMed  Google Scholar 

  41. Szebedinszky C, McGeer JC, McDonald DG, Wood CM (2001) Effects of chronic Cd exposure via the diet or water on internal organ-specific distribution and subsequent gill Cd uptake kinetics in juvenile rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 20:597–607. https://doi.org/10.1002/etc.5620200320

    Article  CAS  PubMed  Google Scholar 

  42. Hollis L, McGeer JC, McDonald DG, Wood CM (2000) Effects of long term sublethal cd exposure in rainbow trout during soft water exposure. Aquat Toxicol 51:91–105. https://doi.org/10.1016/S0166-445X(00)00099-0

    Article  Google Scholar 

  43. Widianarko B, Van Gestel CAM, Verweij RA, Van Straalen NM (2000) Associations between trace metals in sediment, water and guppy Poecilia reticulata (Peters), from urban streams of Semarang, Indonesia. Ecotoxicol Environ Saf 46:101–107. https://doi.org/10.1006/eesa.1999.1879

    Article  CAS  PubMed  Google Scholar 

  44. Čelechovská O, Svobodova Z, Randak T (2005) Arsenic content in tissues of fish from the River Elbe. Acta Vet Brno 74:419–425. https://doi.org/10.2754/avb200574030419

    Article  Google Scholar 

  45. Culioli JL, Calendini S, Mori C, Orsini A (2009) Arsenic accumulation in a freshwater fish living in a contaminated river of Corsica, France. Ecotoxicol Environ Saf 72:1440–1445. https://doi.org/10.1016/j.ecoenv.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  46. Shah AQ, Kazi TG, Arain MB, Jamali MK, Afridi HI, Jalbani N, Baig JA, Kandhro GA (2009) Accumulation of arsenic in different fresh water fish species – potential contribution to high arsenic intakes. Food Chem 112:520–524. https://doi.org/10.1016/j.foodchem.2008.05.095

    Article  CAS  Google Scholar 

  47. Ventura-Lima J, Fattorini D, Regoli F, Monserrat JM (2009) Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinidae) tissues after shor-time exposure: bioaccumulation, biotransformation and biological responses. Environ Pollut 157:3479–3484. https://doi.org/10.1016/j.envpol.2009.06.023

    Article  CAS  PubMed  Google Scholar 

  48. Sandor Z, Csengeri I, Oncsik MB, Alexis MN, Zubcova E (2001) Trace metal levels in freshwater fish, sediment and water. Environ Sci Pollut Res 8:265–268. https://doi.org/10.1007/BF02987404

    Article  CAS  Google Scholar 

  49. Mendil D, Ünal ÖF, Tuzen M, Soylak M (2010) Determination of trace metals in different fish species and sediments from the river Yesilirmak in Tokat, Turkey. Food Chem Toxicol 48:1383–1392. https://doi.org/10.1016/j.fct.2010.03.006

    Article  CAS  PubMed  Google Scholar 

  50. Kalyoncu L, Kalyoncu H, Arslan G (2012) Determination of heavy metals and metals levels in five fish species from Işikli dam Lake and Karacaören dam Lak (Turkey). Environ Monit Assess 184:2231–2235. https://doi.org/10.1007/s10661-011-2112-9

    Article  CAS  PubMed  Google Scholar 

  51. Patiño R, Rosen MR, Orsak EL, Goodbred SL, May TW, Alvarez D, Echols KR, Wieser CM, Ruessler S, Torres L (2012) Patterns of metal composition and biological condition and their association in male common carp across an environmental contaminant gradient in Lake Mead National Recreation Area, Nevada and Arizona, USA. Sci Total Environ 416:215–224. https://doi.org/10.1016/j.scitotenv.2011.11.082

    Article  CAS  PubMed  Google Scholar 

  52. Yi YJ, Zhang SH (2012) Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location alog the Yangtze River. Environ Sci Pollut Res 19:3989–3996. https://doi.org/10.1007/s11356-012-0840-1

    Article  CAS  Google Scholar 

  53. Fang T, Lu W, Li J, Zhao X, Yang K (2017) Levels and risk assessment of metals in sediment and fish from Chaohu Lake, Anhui Province, China. Environ Sci Pollut Res 24:15390–15400. https://doi.org/10.1007/s11356-017-9053-y

    Article  CAS  Google Scholar 

  54. Nauen CE (1983) Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fishery circular No. 764. Food and Agriculture Organization FAO, Rome

    Google Scholar 

  55. NOM-242-SSA1–2009 (2011) Productos y servicios. Productos de la pesca frescos, refrigerados, congelados y procesados. Especificaciones sanitarias y métodos de prueba. Diario Oficial de la Federación, México http://dof.gob.mx/nota_detalle.php?codigo=5177531&fecha=10/02/2011. Accessed 26 March 2018

  56. Codex Stan (1995) Codex General Standard for contaminants and toxins in food and feed. World Health Organization and Food and Agriculture Organization of the United Nations, Switzerland, p 31

    Google Scholar 

  57. Molin M, Ulven SM, Meltzer HM, Alexander J (2015) Arsenic in the human food chain, biotransformations and toxicology – review focusing on seafood arsenic. J Trace Elem Med Biol 31:249–259. https://doi.org/10.1016/j.jtemb.2015.01.010

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received financial support from Mexico’s National Science and Technology Council (CONACYT) through project number 216110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Alvarado.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarado, C., Ramírez, J.M., Herrera-López, E.J. et al. Bioaccumulation of Metals in Cultured Carp (Cyprinus carpio) from Lake Chapala, Mexico. Biol Trace Elem Res 195, 226–238 (2020). https://doi.org/10.1007/s12011-019-01845-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01845-w

Keywords

Navigation