Skip to main content
Log in

Arsenic, Cadmium and Lead Erythrocyte Concentrations in Men with a High, Moderate and Low Level of Physical Training

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to determine changes occurring in the erythrocyte concentrations of arsenic (As), cadmium (Cd) and lead (Pb) in highly trained males, moderately trained males and sedentary men living in the same area of Extremadura (Spain). Thirty sedentary subjects (24.34 ± 3.02 years) with no sports practice and a less active lifestyle formed the control group (CG). Twenty-four moderately trained subjects (23.53 ± 1.85 years), who practised sports at a moderate level between 4 and 7 h/week, without any performance objective and without following any type of systematic training, formed the group of subjects with a moderate degree of training (MTG). And 22 professional cyclists (23.29 ± 2.73 years) at the beginning of their sports season, who trained for more than 20 h/week formed the high-level training group (HTG). Erythrocyte samples from all subjects in a fasting stage were collected, washed and frozen at −80 °C until analysis. Erythrocyte analysis of the trace elements As, Cd and Pb was performed by inductively coupled plasma mass spectrometry (ICP-MS). As concentration was lower in CG (p < 0.01) and MTG (p < 0.01) than HTG. Cd (p < 0.001) and Pb (p < 0.05) concentrations were higher in CG than HTG. All results were expressed in μg/g Hb. Physical training produces a decrease in erythrocyte concentrations of Cd and Pb, as an adaptation in order to avoid their accumulation in the cells and preserve correct cellular functioning. The higher As concentration should be investigated in high-level sportsmen because of a possible negative effect on the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valentine JL, He S-Y, Reisbord LS, Lachenbruch PA (1992) Health response by questionnaire in arsenic-exposed populations. J Clin Epidemiol 45:487–494. https://doi.org/10.1016/0895-4356(92)90097-7

    Article  CAS  PubMed  Google Scholar 

  2. Nawrot TS, Staessen JA, Roels HA, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters H, Vangronsveld J (2010) Cadmium exposure in the population: from health risks to strategies of prevention. BioMetals 23:769–782. https://doi.org/10.1007/s10534-010-9343-z

    Article  CAS  PubMed  Google Scholar 

  3. Satarug S, Moore MR (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 112:1099–1103. https://doi.org/10.1289/ehp.6751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Afridi HI, Kazi TG, Kazi NG, Jamali MK, Arain MB, Sirajuddin, Baig JA, Kandhro GA, Wadhwa SK, Shah AQ (2010) Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients. J Hum Hypertens 24:34–43. https://doi.org/10.1038/jhh.2009.39

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214. https://doi.org/10.1016/J.TAAP.2009.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grandjean P (2010) Even low-dose lead exposure is hazardous. Lancet 376:855–856. https://doi.org/10.1016/S0140-6736(10)60745-3

    Article  PubMed  Google Scholar 

  7. Vaziri ND (2002) Pathogenesis of lead-induced hypertension: role of oxidative stress. J Hypertens Suppl 20:S15–S20

    CAS  PubMed  Google Scholar 

  8. Gonick HC (2002) Lead, renal disease and hypertension. Am J Kidney Dis 40:202–204. https://doi.org/10.1053/ajkd.2002.34681

    Article  PubMed  Google Scholar 

  9. Dietert RR, Piepenbrink MS (2006) Lead and immune function. Crit Rev Toxicol 36:359–385. https://doi.org/10.1080/10408440500534297

    Article  CAS  PubMed  Google Scholar 

  10. Hu H, Rabinowitz M, Smith D (1998) Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect 106:1–8. https://doi.org/10.1289/ehp.981061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodriguez Tuya I, Pinilla Gil E, Maynar Mariño M, García-Moncó Carra RM, Sánchez Misiego A (1996) Evaluation of the influence of physical activity on the plasma concentrations of several trace metals. Eur J Appl Physiol Occup Physiol 73:299–303. https://doi.org/10.1007/BF02425490

    Article  CAS  PubMed  Google Scholar 

  12. LLerena F, Maynar M, Barrientos G, Palomo R, Robles MC, Caballero MJ (2012) Comparison of urine toxic metals concentrations in athletes and in sedentary subjects living in the same area of Extremadura (Spain). Eur J Appl Physiol 112:3027–3031. https://doi.org/10.1007/s00421-011-2276-6

    Article  CAS  PubMed  Google Scholar 

  13. Maynar-Mariño M, Llerena F, Bartolomé I, Crespo C, Muñoz D, Robles MC, Caballero MJ (2018) Effect of long-term aerobic, anaerobic and aerobic-anaerobic physical training in seric toxic minerals concentrations. J Trace Elem Med Biol 45:136–141. https://doi.org/10.1016/j.jtemb.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  14. Maynar M, Llerena F, Bartolomé I, Alves J, Grijota FJ, Robles MC, Muñoz D (2018) Influence of an exercise until exhaustion in serum and urinary concentrations of toxic minerals among professional athletes, a preliminary approach. J Trace Elem Med Biol 50:312–319. https://doi.org/10.1016/j.jtemb.2018.07.022

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh A (2013) Evaluation of chronic arsenic poisoning due to consumption of contaminated ground water in West Bengal, India. Int J Prev Med 4:976–979

    PubMed  PubMed Central  Google Scholar 

  16. Booth M (2000) Assessment of physical activity: an international perspective. Res Q Exerc Sport 71:114–120. https://doi.org/10.1080/02701367.2000.11082794

    Article  PubMed  Google Scholar 

  17. Norton K (1996) Anthropometrica – a textbook of body measurement for sports and health courses

  18. Kabata-Pendias A, Mukherjee A (2007) Trace elements from soil to human. Springer, Heidelberg

    Book  Google Scholar 

  19. Reilly C (2004) The nutritional trace metals. Blackwell Publishing Ltd, Oxford

    Book  Google Scholar 

  20. Moreiras O, Carbajal A, Cabrera L, Cuadrado C (2016) Tablas De Composicion De Alimentos: guia de prácticas

  21. Bogaard HJ, Woltjer HH, van Keimpema AR et al (1996) Comparison of the respiratory and hemodynamic responses of healthy subjects to exercise in three different protocols. Occup Med (Lond) 46:293–298

    Article  CAS  Google Scholar 

  22. Bentley DJ, McNaughton LR (2003) Comparison of Wpeak, VO2peak and the ventilation threshold from two different incremental exercise tests: relationship to endurance performance. J Sci Med Sport 6:422–435. https://doi.org/10.1016/S1440-2440(03)80268-2

    Article  CAS  PubMed  Google Scholar 

  23. Niemelä K, Palatsi I, Takkunen J (1980) The oxygen uptake - work-output relationship of runners during graded cycling exercise: sprinters vs. endurance runners. Br J Sports Med 14:204–209. https://doi.org/10.1136/BJSM.14.4.204

    Article  PubMed  PubMed Central  Google Scholar 

  24. Biswas D, Banerjee M, Sen G, Das JK, Banerjee A, Sau TJ, Pandit S, Giri AK, Biswas T (2008) Mechanism of erythrocyte death in human population exposed to arsenic through drinking water. Toxicol Appl Pharmacol 230:57–66. https://doi.org/10.1016/J.TAAP.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  25. Saha JC, Dikshit AK, Bandyopadhyay M, Saha KC (1999) A review of arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol 29:281–313. https://doi.org/10.1080/10643389991259227

    Article  CAS  Google Scholar 

  26. Kobayashi Y, Hayakawa T, Hirano S (2007) Expression and activity of arsenic methyltransferase Cyt19 in rat tissues. Environ Toxicol Pharmacol 23:115–120. https://doi.org/10.1016/j.etap.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  27. Heck JE, Chen Y, Grann VR, Slavkovich V, Parvez F, Ahsan H (2008) Arsenic exposure and anemia in Bangladesh: a population-based study. J Occup Environ Med 50:80–87. https://doi.org/10.1097/JOM.0b013e31815ae9d4

    Article  CAS  PubMed  Google Scholar 

  28. Mahmud H, Föller M, Lang F (2009) Arsenic-induced suicidal erythrocyte death. Arch Toxicol 83:107–113. https://doi.org/10.1007/s00204-008-0338-2

    Article  CAS  PubMed  Google Scholar 

  29. Lu Y, Ahmed S, Harari F, Vahter M (2015) Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma. J Trace Elem Med Biol 29:249–254. https://doi.org/10.1016/j.jtemb.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  30. Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24:378–399

    Article  CAS  Google Scholar 

  31. Louekari K, Valkonen S, Pousi S, Virtanen L (1991) Estimated dietary intake of lead and cadmium and their concentration in blood. Sci Total Environ 105:87–99. https://doi.org/10.1016/0048-9697(91)90331-8

    Article  CAS  PubMed  Google Scholar 

  32. Babu KR, Rajmohan HRR, Rajan BKM, Kumar KM (2006) Plasma lipid peroxidation and erythrocyte antioxidant enzymes status in workers exposed to cadmium. Toxicol Ind Health 22:329–335. https://doi.org/10.1177/0748233706071736

    Article  CAS  PubMed  Google Scholar 

  33. Uchida M, Teranishi H, Aoshima K, Katoh T, Kasuya M, Inadera H (2004) Reduction of erythrocyte catalase and superoxide dismutase activities in male inhabitants of a cadmium-polluted area in Jinzu river basin, Japan. Toxicol Lett 151:451–457. https://doi.org/10.1016/j.toxlet.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  34. Messaoudi I, Hammouda F, El Heni J et al (2010) Reversal of cadmium-induced oxidative stress in rat erythrocytes by selenium, zinc or their combination. Exp Toxicol Pathol 62:281–288. https://doi.org/10.1016/j.etp.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  35. Genuis SJ, Birkholz D, Rodushkin I, Beesoon S (2011) Blood, urine, and sweat (BUS) study: monitoring and elimination of bioaccumulated toxic elements. Arch Environ Contam Toxicol 61:344–357. https://doi.org/10.1007/s00244-010-9611-5

    Article  CAS  PubMed  Google Scholar 

  36. Sears ME, Kerr KJ, Bray RI (2012) Arsenic, cadmium, lead, and mercury in sweat: a systematic review. J Environ Public Health 2012:1–10. https://doi.org/10.1155/2012/184745

    Article  CAS  Google Scholar 

  37. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87. https://doi.org/10.1016/J.TOX.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  38. Abadin H, Ashizawa A, Stevens Y-W, et al (2007) Toxicological profile for lead. Agency for Toxic Substances and Disease Registry (US)

  39. deSilva PE (1981) Determination of lead in plasma and studies on its relationship to lead in erythrocytes. Br J Ind Med 38:209–217

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Suwalsky M, Villena F, Norris B, Cuevas YF, Sotomayor CP, Zatta P (2003) Effects of lead on the human erythrocyte membrane and molecular models. J Inorg Biochem 97:308–313. https://doi.org/10.1016/S0162-0134(03)00292-7

    Article  CAS  PubMed  Google Scholar 

  41. Donaldson WE, Knowles SO (1993) Is lead toxicosis a reflection of altered fatty acid composition of membranes? Comp Biochem Physiol Part C Comp

  42. Shafiq-Ur-Rehman (2013) Effect of lead on lipid peroxidation, phospholipids composition, and methylation in erythrocyte of human. Biol Trace Elem Res 154:433–439. https://doi.org/10.1007/s12011-013-9745-1

    Article  CAS  PubMed  Google Scholar 

  43. Sakai T (2000) Biomarkers of lead exposure. Ind Health 38:127–142. https://doi.org/10.2486/indhealth.38.127

    Article  CAS  PubMed  Google Scholar 

  44. Ahn J, Kim N-S, Lee B-K, Park J, Kim Y (2018) Association of blood pressure with blood lead and cadmium levels in Korean adolescents: analysis of data from the 2010–2016 Korean National Health and Nutrition Examination Survey. J Korean Med Sci 33:e278. https://doi.org/10.3346/jkms.2018.33.e278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iglesias PJ, Muñoz D, Llerena F et al (2017) Long-term adaptations to aerobic-anaerobic physical training in the erythrocyte membrane fatty acids profile. Int J Sport Exerc Med 3:1–7. https://doi.org/10.23937/2469-5718/1510063

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the collaboration of SAIUex. The research was conducted in the laboratory of Physiology of the Sport Sciences Faculty (University of Extremadura).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Muñoz.

Ethics declarations

They were informed about the aim and procedures of the study, and gave their informed consents and participated voluntarily. The University of Extremadura Ethics Committee approved the investigation according to the latest version of the Helsinki declaration for human research.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grijota, F.J., Muñoz, D., Bartolomé, I. et al. Arsenic, Cadmium and Lead Erythrocyte Concentrations in Men with a High, Moderate and Low Level of Physical Training. Biol Trace Elem Res 195, 39–45 (2020). https://doi.org/10.1007/s12011-019-01837-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01837-w

Keywords

Navigation