Skip to main content
Log in

Multifarious Pharmacological Applications of Green Routed Eco-Friendly Iron Nanoparticles Synthesized by Streptomyces Sp. (SRT12)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A simple, eco-friendly, green routine co-precipitation method was experimented to synthesize iron nanoparticles (Fe-NPs) using the cell-free supernatant of actinobacteria. The biosynthesized nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffractometer (XRD), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), zeta potential analyser and Fourier transform infrared (FTIR) spectroscopy. The synthesized nanoparticles were crystalline, quasi-spherical in shape and their average size ranged from 65.0 to 86.7 nm. In our radical scavenging assays, the nanoparticles have revealed a strong antioxidant activity with respective standard ascorbic acid. The nanoparticles also exhibited a wide bactericidal action on pathogens namely Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Shigella flexneri and Escherichia coli. At 75 μg/ml concentration, the nanoparticles showed the highest inhibition against S. aureus (16.2 ± 0.45 mm), the lowest zone of inhibition was seen against K. pneumoniae (12.3 ± 0.50 mm) and moderate inhibition on other strains. Further, its cytotoxicity was seen as effective against DU145 and PC3 cells. The morphological changes caused in the prostate cell lines due to antiproliferative effect were observed through DAPI and AO/EB staining. This synthesis method specifies a new route for biosynthesis of Fe-NPs and the accomplished results illustrates that it can be used for a wide range of biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saif S, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6(11):209

    Article  PubMed Central  Google Scholar 

  2. Prasad C, Gangadhara S, Venkateswarlu P (2016) Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Appl Nanosci 6(6):797–802

    Article  CAS  Google Scholar 

  3. Jassal V, Shanker U, Gahlot S (2016) Green synthesis of some iron oxide nanoparticles and their interaction with 2-amino, 3-amino and 4-Aminopyridines. Mater Today Proc 3(6):1874–1882

    Google Scholar 

  4. Patra JK, Baek KH (2017) Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo-catalyzed condition and investigation of their antimicrobial and antioxidant activity. J Photochem Photobiol B 173:291–300

    Article  CAS  PubMed  Google Scholar 

  5. Daniel-da-Silva AL, Trindade T, Goodfellow BJ, Costa BF, Correia RN, Gil AM (2007) In situ synthesis of magnetite nanoparticles in carrageenan gels. Biomacromolecules 8(8):2350–2357

    Article  CAS  PubMed  Google Scholar 

  6. Armstrong D, Bharali DJ, Armstrong D, Bharali D (2013) Oxidative stress and nanotechnology. Methods Protocols 1028

  7. Sandhir R, Yadav A, Sunkaria A, Singhal N (2015) Nano-antioxidants: an emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 89:209–226

    Article  CAS  PubMed  Google Scholar 

  8. Gallo JM, Varkonyi P, Hassan EE, Groothius DR (1993) Targeting anticancer drugs to the brain: II. Physiological pharmacokinetic model of oxantrazole following intraarterial administration to rat glioma-2 (RG-2) bearing rats. J Pharmacokinet Biopharm 21(5):575–592

    Article  CAS  PubMed  Google Scholar 

  9. Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C, Huenges E, Nawroth T, Arnold W, Parak FG (2006) Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 35(5):446–450

    Article  CAS  PubMed  Google Scholar 

  10. Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Mag Mater 321(13):1947–1950

    Article  CAS  Google Scholar 

  11. Khan ST, Musarrat J, Al-Khedhairy AA (2016) Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B Biointerfaces 146:70–83

    Article  CAS  PubMed  Google Scholar 

  12. Hu YL, Gao JQ (2010) Potential neurotoxicity of nanoparticles. Int J Pharm 394(1–2):115–121

    Article  CAS  PubMed  Google Scholar 

  13. Sharmila G, Thirumarimurugan M, Muthukumaran C (2019) Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem J 145:578–587

    Article  CAS  Google Scholar 

  14. Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(1):8

    Article  Google Scholar 

  15. Souza BW, Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, Teixeira JA et al (2012) Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocoll 27(2):287–292

    Article  CAS  Google Scholar 

  16. Patel Rajesh M, Patel Natvar J (2011) In vitro antioxidant activity of coumarin compounds by DPPH, super oxide and nitric oxide free radical scavenging methods. J Adv Pharm Educ Res 1:52–68

    Google Scholar 

  17. Makari HK, Haraprasad N, Patil HS, Ravikumar S (2008) In vitro antioxidant activity of the hexane and methanolic extracts of Cordia wallichii and Celastrus paniculata. IJAAM 1:1–10

  18. Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–854

    Article  CAS  PubMed  Google Scholar 

  19. Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28(4):1057–1060

    Article  CAS  Google Scholar 

  20. Wayne PA (2014) Clinical and laboratory standards institute: performance standards for antimicrobial susceptibility testing: twenty-fourth informational supplement, M100-S24. Clin Lab Stand Instit (CLSI) 34:(1)

  21. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M (2017) Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem Lett Rev 10:186–201

    Article  CAS  Google Scholar 

  22. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 65(1-2):55-63 

    Article  CAS  PubMed  Google Scholar 

  23. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  PubMed  Google Scholar 

  24. Sulaiman GM, Tawfeeq AT, Naji AS (2018) Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artif Cells Nanomed Biotechnol 46(6):1215–1229

    Article  CAS  PubMed  Google Scholar 

  25. Kumar B, Smita K, Cumbal L, Debut A, Galeas S, Guerrero VH (2016) Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf. Mater Chem Phys 179:310–315

    Article  CAS  Google Scholar 

  26. Shanmugasundaram T, Radhakrishnan M, Poongodi A, Kadirvelu K, Balagurunathan R (2018) Bio-inspired synthesis of superparamagnetic iron oxide nanoparticles for enhanced in vitro anticancer therapy. MRS Commun 8(2):604–609

    Article  CAS  Google Scholar 

  27. Fatemi M, Mollania N, Momeni-Moghaddam M, Sadeghifar F (2018) Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. J Biotechnol 270:1–11

    Article  CAS  PubMed  Google Scholar 

  28. Sathishkumar G, Logeshwaran V, Sarathbabu S, Jha PK, Jeyaraj M, Rajkuberan C, Senthilkumar N, Sivaramakrishnan S (2018) Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. Fruit extract for their antibacterial and cytotoxicity activities. Artif Cells Nanomed Biotechnol 46(3):589–598

    Article  CAS  PubMed  Google Scholar 

  29. Beheshtkhoo N, Kouhbanani MAJ, Savardashtaki A, Amani AM, Taghizadeh S (2018) Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl Phys A Mater Sci Process 124(5):363

    Article  Google Scholar 

  30. Sundaram PA, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioprocess Eng 17(4):835–840

    Article  CAS  Google Scholar 

  31. Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419

    Article  CAS  Google Scholar 

  32. Muthukumar H, Matheswaran M (2015) Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain Chem Eng 3(12):3149–3156

    Article  CAS  Google Scholar 

  33. Irshad R, Tahir K, Li B, Ahmad A, Siddiqui AR, Nazir S (2017) Antibacterial activity of biochemically capped iron oxide nanoparticles: a view towards green chemistry. J Photochem Photobiol B 170:241–246

    Article  CAS  PubMed  Google Scholar 

  34. Kohanski MA, DePristo MA, Collins JJ (2010) Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37(3):311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6):5164–5173

    Article  CAS  PubMed  Google Scholar 

  36. Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927–4933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farshchi HK, Azizi M, Jaafari MR, Nemati SH, Fotovat A (2018) Green synthesis of iron nanoparticles by rosemary extract and cytotoxicity effect evaluation on cancer cell lines. Biocatal Agric Biotechnol 16:54–62

    Article  Google Scholar 

  38. Izadiyan Z, Shameli K, Miyake M, Hara H, Mohamad SEB, Kalantari K, Taib SHM, Rasouli E (2018) Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.02.019

    Article  Google Scholar 

  39. Martin AL, Hickey JL, Ablack AL, Lewis JD, Luyt LG, Gillies ER (2010) Synthesis of bombesin-functionalized iron oxide nanoparticles and their specific uptake in prostate cancer cells. J Nanopart Res 12(5):1599–1608

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. B. Shanthi, Centralised Instrumentation and Service Laboratory (C.I.S.L), Department of Physics, Annamalai University, for providing facilities during the study period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinath Rajeswaran.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeswaran, S., Somasundaram Thirugnanasambandan, S., Dewangan, N.K. et al. Multifarious Pharmacological Applications of Green Routed Eco-Friendly Iron Nanoparticles Synthesized by Streptomyces Sp. (SRT12). Biol Trace Elem Res 194, 273–283 (2020). https://doi.org/10.1007/s12011-019-01777-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01777-5

Keywords

Navigation