Abstract
The objective of the present study was to assess the levels of Se, as well as other essential and toxic trace elements in wheat grains and traditional Roti-bread from whole-grain flour in a seleniferous area of Punjab (India) using inductively-coupled plasma mass-spectrometry. Wheat grain and bread selenium levels originating from seleniferous areas exceeded the control values by a factor of more than 488 and 179, respectively. Se-rich wheat was also characterized by significantly increased Cu and Mn levels. Se-rich bread also contained significantly higher levels of Cr, Cu, I, Mn, and V. The level of Li and Sr was reduced in both Se-enriched wheat and bread samples. Roti bread from Se-enriched wheat was also characterized by elevated Al, Cd, and Ni, as well as reduced As and Hg content as compared to the respective control values. Se intake with Se-rich bread was estimated as more than 13,600% of RDA. Daily intake of Mn with both Se-unfortified and Se-fortified bread was 133% and 190% of RDA. Therefore, Se-rich bread from wheat cultivated on a seleniferous area of Punjab (India) may be considered as a potent source of selenium, although Se status should be monitored throughout dietary intervention.
This is a preview of subscription content, access via your institution.


References
Kieliszek M, Błażejak S (2013) Selenium: significance, and outlook for supplementation. Nutrition 29(5):713–718. https://doi.org/10.1016/j.nut.2012.11.012
Yao HD, Wu Q, Zhang ZW, Li S, Wang XL, Lei XG, Xu SW (2013) Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim Biophys Acta 1830(4):3112–3120. https://doi.org/10.1016/j.bbagen.2013.01.007
Yao HD, Wu Q, Zhang ZW, Zhang JL, Li S, Huang JQ, Ren F-Z, Xu S-W, Wang X-L, Lei XG (2013) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of Se-deficient chicks. J Nutr 143(5):613–619. https://doi.org/10.3945/jn.112.172395
Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In Selinus O (ed). Essent Med Geol:375–416 https://doi.org/10.1007/978-94-007-4375-5_16
Rayman M (2017) Selenium intake and status in health & disease. Free Radic Biol Med 112:5. https://doi.org/10.1016/j.freeradbiomed.2017.10.353
Jones GD, Droz B, Greve P, Gottschalk P, Poffet D, McGrath SP, Seneviratne SI, Smith P, Winkel LH (2017) Selenium deficiency risk predicted to increase under future climate change. Proc Natl Acad Sci U S A 114:2848–2853. https://doi.org/10.1073/pnas.1611576114
Vinceti M, Filippini T, Rothman KJ (2018) Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Epidemiol 33(9):789–810. https://doi.org/10.1007/s10654-018-0422-8
Vinceti M, Mandrioli J, Borella P, Michalke B, Tsatsakis A, Finkelstein Y (2014) Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicol Lett 230(2):295–303. https://doi.org/10.1016/j.toxlet.2013.11.016
Ötles S, Cagindi Ö (2006) Cereal based functional foods and nutraceuticals. Acta Sci Pol Technol Aliment 5:107–112
White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10(12):586–593. https://doi.org/10.1016/j.tplants.2005.10.001
Fairweather-Tait SJ, Collings R, Hurst R (2010) Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 91(5):1484S–1491S. https://doi.org/10.3945/ajcn.2010.28674J
Filippini T, Cilloni S, Malavolti M, Violi F, Malagoli C, Tesauro M, Bottecchi I, Ferrari A, Vescovi L, Vinceti M (2018) Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a northern Italy community. JTEMB 50:508–517. https://doi.org/10.1016/j.jtemb.2018.03.001
Hart DJ, Fairweather-Tait SJ, Broadley MR, Dickinson SJ, Foot I, Knott P, McGrath SP, Mowat H, Norman K, Scott PR, Stroud JL, Tucker M, White PJ, Zhao FJ, Hurst R (2011) Selenium concentration and speciation in biofortified flour and bread: retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chem 126(4):1771–1778. https://doi.org/10.1016/j.foodchem.2010.12.079
dos Reis AR, El-Ramady H, Santos EF, Gratão PL, Schomburg L (2017) Overview of selenium deficiency and toxicity worldwide: affected areas, selenium-related health issues, and case studies. In: Pilon-Smits E, Winkel L, Lin ZQ (eds) Selenium in plants. Plant Ecophysiology, p 209–230. https://doi.org/10.1007/978-3-319-56249-0_13
Dhillon KS, Dhillon SK (2019) Genesis of seleniferous soils and associated animal and human health problems. Adv Agron 154:2–296. https://doi.org/10.1016/bs.agron.2018.11.001
Vinceti M, Filippini T, Wise LA (2018) Environmental selenium and human health: an update. Curr Environ Health Rep 5(4):464–485. https://doi.org/10.1007/s40572-018-0213-0
Ducsay L, Ložek O, Varga L (2009) The influence of selenium soil application on its content in spring wheat. Plant Soil Environ 55:80–84
Boldrin PF, Faquin V, Ramos SJ, Boldrin KVF, Ávila FW, Guilherme LRG (2013) Soil and foliar application of selenium in rice biofortification. J Food Compos Anal 31(2):238–244. https://doi.org/10.1016/j.jfca.2013.06.002
Jaiswal SK, Prakash R, Acharya R, Reddy AVR, Prakash NT (2012) Selenium content in seed, oil and oil cake of Se hyperaccumulated Brassica juncea (Indian mustard) cultivated in a seleniferous region of India. Food Chem 134:401–404. https://doi.org/10.1016/j.foodchem.2012.02.140
Skalnaya МG, Jaiswal SK, Prakash R, Prakash NT, Grabeklis AR, Zhegalova IV, Zhang F, Guo X, Tinkov AA, Skalny AV (2017) The effect of cultivation on seleniferous soils on the level of macroelements in cereals. Trace Elem Med 18:8–12. https://doi.org/10.19112/2413-6174-2017-18-4-8-12 [In Russian]
Pazurkiewicz-Kocot K, Kita A, Pietruszka M (2008) Effect of selenium on magnesium, iron, manganese, copper, and zinc accumulation in corn treated by indole-3-acetic acid. Commun Soil Sci Plant Anal 39:2303–2318. https://doi.org/10.1080/00103620802292343
Feng R, Wei C, Tu S (2013a) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68. https://doi.org/10.1016/j.envexpbot.2012.09.002
Wei YH, Zhang JY, Luo LG, Tu TH (2014) Simultaneous determination of Se, trace elements and major elements in Se-rich rice by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) after microwave digestion. Food Chem 159:507–511. https://doi.org/10.1016/j.foodchem.2014.03.057
Tobiasz A, Walas S, Filek M, Mrowiec H, Samsel K, Sieprawska A, Hartikainen H (2014) Effect of selenium on distribution of macro-and micro-elements to different tissues during wheat ontogeny. Biol Plant 58:370–374. https://doi.org/10.1007/s10535-014-0407-8
Skalny AV, Burtseva TI, Salnikova EV, Ajsuvakova OP, Skalnaya MG, Kirichuk AA, Tinkov AA (2019) Geographic variation of environmental, food, and human hair selenium content in an industrial region of Russia. Environ Res 171:293–301. https://doi.org/10.1016/j.envres.2019.01.038
Lyons GH, Genc Y, Stangoulis JC, Palmer LT, Graham RD (2005) Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biol Trace Elem Res 103(2):155–168. https://doi.org/10.1385/BTER:103:2:155
Cubadda F, Aureli F, Raggi A, Carcea M (2009) Effect of milling, pasta making and cooking on minerals in durum wheat. J Cereal Sci 49(1):92–97. https://doi.org/10.1016/j.jcs.2008.07.008
Dhillon KS, Dhillon SK (1991) Selenium toxicity in soils, plants and animals in some parts of Punjab, India. Int J Environ Res 37:15–24. https://doi.org/10.1080/00207239108710613
Mir SA, Naik HR, Shah MA, Mir MM, Wani MH, Bhat MA (2014) Indian flat breads: a review. Food Nutr Sci 5(06):549–561. https://doi.org/10.4236/fns.2014.56065
Nardi EP, Evangelista FS, Tormen L, Saint TD, Curtius AJ, de Souza S, Barbosa F Jr (2009) The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem 112(3):727–732. https://doi.org/10.1016/j.foodchem.2008.06.010
D’Ilio S, Violante N, Majorani C, Petrucci F (2011) Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: still a challenge? A review. Anal Chim Acta 698(1–2):6–13. https://doi.org/10.1016/j.aca.2011.04.052
Goldhaber SB (2003) Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 38(2):232–242. https://doi.org/10.1016/S0273-2300(02)00020-X
World Health Organization (2010a) Exposure to arsenic: a major public health concern. Preventing Disease through Healthy Environments, Geneva https://www.who.int/ipcs/features/arsenic.pdf. Accessed March 13, 2019
World Health Organization (2010b) Exposure to cadmium: a major public health concern. Preventing Disease through Healthy Environments, Geneva https://www.who.int/ipcs/features/cadmium.pdf. Accessed March 13, 2019
World Health Organization (2007) Exposure to mercury: a major public health concern. Preventing Disease through Healthy Environments, Geneva https://www.who.int/ipcs/features/mercury.pdf. Accessed March 13, 2019
World Health Organization (2010c) Exposure to lead: a major public health concern. Preventing Disease through Healthy Environments, Geneva https://www.who.int/ipcs/features/lead.pdf. Accessed March 13, 2019
Cubadda F, Aureli A, Ciardullo S, D’Amato M, Raggi A, Acharya R, Reddy AVR, Tejo Prakash N (2010) Changes in selenium speciation associated with increasing tissue concentration of selenium in wheat grain. J Agric Food Chem 58:2295–2301. https://doi.org/10.1021/jf903004a
Aureli F, Ouerdane L, Bierla K, Szpunar J, Tejo Prakash N, Cubadda F (2012) Identification of selenosugars and other low-molecular weight selenium metabolites in high-selenium cereal crops. Metallomics 4:968–978. https://doi.org/10.1039/c2mt20085f
Skalnaya MG, Jaiswal SK, Prakash R, Prakash NT, Grabeklis AR, Zhegalova IV, Zhang F, Guo X, Tinkov AA, Skalny AV (2018) The level of toxic elements in edible crops from seleniferous area (Punjab, India). Biol Trace Elem Res 184:523–528. https://doi.org/10.1007/s12011-017-1216-7
Lee S, Woodard HJ, Doolittle JJ (2011a) Selenium uptake response among selected wheat (Triticum aestivum) varieties and relationship with soil selenium fractions. Soil Sci Plant Nutr 57:823–832. https://doi.org/10.1080/00380768.2011.641909
Keskinen R, Turakainen M, Hartikainen H (2010) Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass. Plant Soil 333:301–313. https://doi.org/10.1007/s11104-010-0345-y
Lyons GH, Stangoulis JC, Graham RD (2005) Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels. Plant Soil 270:179–188. https://doi.org/10.1007/s11104-004-1390-1
Zhao C, Ren J, Xue C, Lin E (2005) Study on the relationship between soil selenium and plant selenium uptake. Plant Soil 277:197–206. https://doi.org/10.1007/s11104-005-7011-9
Eich-Greatorex S, Sogn TA, Øgaard AF, Aasen I (2007) Plant availability of inorganic and organic selenium fertiliser as influenced by soil organic matter content and pH. Nutr Cycl Agroecosyst 79:221–231. https://doi.org/10.1007/s10705-007-9109-3
Lee S, Woodard HJ, Doolittle JJ (2011b) Effect of phosphate and sulfate fertilizers on selenium uptake by wheat (Triticum aestivum). Soil Sci Plant Nutr 57:696–704. https://doi.org/10.1080/00380768.2011.623282
Drahoňovský J, Száková J, Mestek O, Tremlová J, Kaňa A, Najmanová J, Tlustoš P (2016) Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application. Environ Exp Bot 125:12–19. https://doi.org/10.1016/j.envexpbot.2016.01.006
Landberg T, Greger M (1994) Influence of selenium on uptake and toxicity of copper and cadmium in pea (Pisum sativum) and wheat (Triticum aestivum). Physiol Plant 90:637–644. https://doi.org/10.1111/j.1399-3054.1994.tb02518.x
Zembala M, Filek M, Walas S, Mrowiec H, Kornaś A, Miszalski Z, Hartikainen H (2010) Effect of selenium on macro-and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329:457–468. https://doi.org/10.1007/s11104-009-0171-2
Yáñez Barrientes E, Rodríguez Flores C, Wrobel K, Wrobel K (2012) Impact of cadmium and selenium exposure on trace elements, fatty acids and oxidative stress in Lepidium sativum. J Mex Chem Soc 56:3–9
Kleiber T, Krzesiński W, Przygocka-Cyna K, Spiżewski T (2018) Alleviation effect of selenium on manganese stress of plants. Ecol Chem Eng S 25:143–152. https://doi.org/10.1515/eces-2018-0010
Hasanuzzaman M, Nahar K, Fujita M (2014) Silicon and selenium: two vital trace elements that confer abiotic stress tolerance to plants. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, London, pp 377–422. https://doi.org/10.1016/B978-0-12-800876-8.00016-3
Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2; 1 in selenite uptake in rice. Plant Physiol 153:1871–1877. https://doi.org/10.1104/pp.110.15786
Ghosh S, Biswas AK (2017) Selenium modulates growth and thiol metabolism in wheat (Triticum aestivum L.) during arsenic stress. Am J Plant Sci 8(03):363–389. https://doi.org/10.4236/ajps.2017.83026
Chen S, Zhang C, Zhang Q, Fun M, Sun X (2009) Study on interaction between selenium and mercury in the seedling stage of winter wheat. Guizhou Agric Sci (1):28–29
Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Prakash S, Srivastava MM (1996) Effect of selenite and selenate on plant uptake of cadmium by maize (Zea mays). Bull Environ Contam Toxicol 56(3):419–424. https://doi.org/10.1007/s001289900060
Ertl K, Goessler W (2018) Grains, whole flour, white flour, and some final goods: an elemental comparison. Eur Food Res Technol 244(11):2065–2075. https://doi.org/10.1007/s00217-018-3117-1
Teklić T, Lončarić Z, Kovačević V, Singh BR (2013) Metallic trace elements in cereal grain–a review: how much metal do we eat? Food Energy Secur 2(2):81–95. https://doi.org/10.1002/fes3.24
Cardoso BR, Duarte GBS, Reis BZ, Cozzolino SM (2017) Brazil nuts: nutritional composition, health benefits and safety aspects. Food Res Int 100:9–18. https://doi.org/10.1016/j.foodres.2017.08.036
Stockler-Pinto MB, Mafra D, Farage NE, Boaventura GT, Cozzolino SMF (2010) Effect of Brazil nut supplementation on the blood levels of selenium and glutathione peroxidase in hemodialysis patients. Nutrition 26(11–12):1065–1069. https://doi.org/10.1016/j.nut.2009.08.006
Martens IB, Cardoso BR, Hare DJ, Niedzwiecki MM, Lajolo FM, Martens A, Cozzolino SM (2015) Selenium status in preschool children receiving a Brazil nut–enriched diet. Nutrition 31(11–12):1339–1343. https://doi.org/10.1016/j.nut.2015.05.005
Vinceti M, Chawla R, Filippini T, Dutt C, Cilloni S, Loomba R, Whelton P (2019) Blood pressure levels and hypertension prevalence in a high selenium environment: results from a cross-sectional study. Nutr Metab Cardiovasc Dis 29(4):398–408. https://doi.org/10.1016/j.numecd.2019.01.004
Funding
The current investigation is supported by the Russian Foundation for Basic Research within project no. 17-55-45027 and Department of Science and Technology, Government of India (INT/RUS/RFBR/P-252) “Localization of selenium and other trace elements in edible crops cultivated in seleniferous soils.”
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Skalnaya, M.G., Tinkov, A.A., Prakash, N.T. et al. Selenium and Other Elements in Wheat (Triticum aestivum) and Wheat Bread from a Seleniferous Area. Biol Trace Elem Res 192, 10–17 (2019). https://doi.org/10.1007/s12011-019-01776-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12011-019-01776-6
Keywords
- Selenium
- Cereals
- Manganese
- Recommended daily allowance
- Toxicity