Abstract
The present study aims to investigate the hepatoprotective effects of selenium on toxicity induced by ‘Désormone Lourd’ based on 2,4-dichlorophenoxyacetic acid in Wistar rats. Male Wistar rats were divided into four groups and were treated orally. The (C) group was used as a control, while the test groups were treated with Se (0.2 mg/kg b.w.), 2,4-D (5 mg/kg b.w.) or both (2,4-D + Se) for 4 weeks. Our results showed that chronic treatment with 2,4-D resulted in hepatotoxicity, as revealed by an increase in liver function markers Aminotransferases (ALT, AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and total bilirubin (TB), along with reduced total protein content and albumin. An overall pro-oxidant effect was associated with a decrease in the reduced glutathione (GSH) content and the enzymatic activity of glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx), and an increase in malondialdehyde (MDA) and protein carbonyl levels (PCO). Microscopic observation of liver in 2,4-D-treated rats reveals lesions, which results in perivascular inflammatory infiltration around the vessel, sinusoidal dilatation and vacuolization of hepatocytes. However, selenium supplementation in 2,4-D-treated rats elicited a reduction in the toxic effects of the pesticide by improving the studied parameters, which was confirmed by the histological study of the liver. Selenium appears to have a promising prophylactic effect through its effective anti-radical action against the hepatotoxic effects of 2,4-D.
Similar content being viewed by others
References
Grube A, Donaldson D, Kiely T, Wu L, Kiely T (2011) Pesticides industry sales and usage: 2006 and 2007 market estimates. U.S. Environmental Protection Agency 1–41 https://doi.org/https://www.epa.gov/sites/production/files/2015-10/documents/market_estimates2007.pdf
Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752–758
Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66:113–120
Bus JS, Hammond LE (2007) Regulatory progress, toxicology, and public concerns with 2,4-D: where do we stand after two decades. Crop Prot 26:266–269
Peterson MA, McMaster SA, Riechers DE, Skelton J, Stahlman PW (2016) 2,4-D past, present, and future: a review. Weed Technol 30(2):303–345
Smith AM, Smith MT, La Merrill MA, Liaw J, Steinmaus C (2017) 2, 4-Dichlorophenoxyacetic acid (2, 4-D) and risk of non-Hodgkin lymphoma: a meta-analysis accounting for exposure levels. Ann Epidemiol 27(4):281–289
Islam F, Wang J, Farooq MA, Khan MS, Xu L, Zhu J, Zhou W (2018) Potential impact of the herbicide 2, 4-dichlorophenoxyacetic acid on human and ecosystems. Environ Int 111:332–351
Tayeb W, Nakbi A, Cheraief I, Miled A, Hammami M (2013) Alteration of lipid status and lipid metabolism, induction of oxidative stress and lipid peroxidation by 2, 4-dichlorophenoxyacetic herbicide in rat liver. Toxicol Mech Methods 23(6):449–458
Troudi A, Soudani N, Samet AM, Amara IB, Zeghal N (2011) 2,4-Dichlorophenoxyacetic acid effects on nephrotoxicity in rats during late pregnancy and early postnatal periods. Ecotoxicol Environ Saf 74(8):2316–2323
Nakbi A, Tayeb W, Dabbou S, Chargui I, Issaoui M, Zakhama A, Miled A, Hammami M (2012) Hypolipidemic and antioxidant activities of virgin olive oil and its fractions in 2,4-diclorophenoxyacetic acid-treated rats. Nutrition 28:81–91
Amel N, Wafa T, Samia D, Yousra B, Issam C, Cheraif I, Mohamed H (2016) Extra virgin olive oil modulates brain docosahexaenoic acid level and oxidative damage caused by 2, 4-Dichlorophenoxyacetic acid in rats. J Food Sci Technol 53(3):1454–1464
Marouani N, Tebourbi O, Cherif D, Hallegue D, Yacoubi MT, Sakly M, Rhouma KB (2017) Effects of oral administration of 2, 4-dichlorophenoxyacetic acid (2, 4-D) on reproductive parameters in male Wistar rats. Environ Sci Pollut Res 24(1):519–526
Deshmukh US, Ramteke PM (2017) Hematological, biochemical alterations, and changes in histological architecture of some tissue of male Wistar rats exposed to 2, 4-D- herbicide. Eur J Environ Ecol 4:17–21
Wafa T, Amel N, Issam C, Imed C, Abdelhedi M, Mohamed H (2011) Subacute effects of 2, 4-dichlorophenoxyacetic herbicide on antioxidant defense system and lipid peroxidation in rat erythrocytes. Pestic Biochem Physiol 99(3):256–264
Dakhakhni TH, Raouf GA, Qusti SY (2016) Evaluation of the toxic effect of the herbicide 2, 4-D on rat hepatocytes: an FT-IR spectroscopic study. Eur Biophys J 45:311–320
Schreinemachers DM (2010) Perturbation of lipids and glucose metabolism associated with previous 2, 4-D exposure: a cross-sectional study of NHANES III data, 1988-1994. Environ Health 9(1):11
Bors M, Bukowska B, Pilarski, R, Gulewicz, K, Oszmiański, J, Michałowicz J, & Koter-Michalak M (2011) Protective activity of the Uncaria tomentosa extracts on human erythrocytes in oxidative stress induced by 2, 4-dichlorophenol (2, 4-DCP) and catechol. Food and chemical toxicology49(9): 2202–2211
Bukowska B, Bors M, Gulewicz K, Koter-Michalak M (2012) Uncaria tomentosa extracts protect human erythrocyte catalase against damage induced by 2, 4-D-Na and its metabolites. Food Chem Toxicol 50(6):2123–2127
Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54(4):287–293
Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74
Djeffal A, Messarah M, Boumendjel A, Kadeche L, Feki AE (2015) Protective effects of vitamin C and selenium supplementation on methomyl-induced tissue oxidative stress in adult rats. Toxicol Ind Health 31(1):31–43
Papp LV, Holmgren A, Khanna KK (2010) Selenium and selenoproteins in health and disease. Antioxid Redox Signal 12(7):793–795
Wrobel JK, Power R, Toborek M (2016) Biological activity of selenium: revisited. IUBMB Life 68(2):97–105
Liu H, Xu H, Huang K (2017) Selenium in the prevention of atherosclerosis and its underlying mechanisms. Metallomics 9:21–37
Ruseva B, Atanasova M, Tsvetkova R, Betova T, Mollova M, Alexandrova M, Laleva P, Dimitrova A (2015) Effect of selenium supplementation on redox status of the aortic wall in young spontaneously hypertensive rats. Oxidative Med Cell Longev 2015:1–10. https://doi.org/10.1155/2015/609053
Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6(1):25–54
Reeves MA, Hoffmann PR (2009) The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 66(15):2457–2478
Eltayeb AA, Liu Q, Ganl L, Liu H, Xu H (2004) Antagonistic effect of scutellarin on the toxicity of selenium in rat livers. Biol Trace Elem Res 98(3):253–264
Wang N, Tan HY, Li S, Xu Y, Guo W, Feng Y (2017) Supplementation of micronutrient selenium in metabolic diseases: its role as an antioxidant. Oxidative Med Cell Longev 2017:1–13. https://doi.org/10.1155/2017/7478523
Favrot C, Beal D, Blouin E, Leccia MT, Roussel AM, Rachidi W (2018) Age-dependent protective effect of selenium against UVA irradiation in primary human keratinocytes and the associated DNA repair signature. Oxidative Med Cell Longev 2018:1–9. https://doi.org/10.1155/2018/5895439
Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39(3):112–120
Rayman M (2017) Selenium Intake and Status in Health & Disease. Free Radic Biol Med 112:5
Liu H, Xu H, Huang K (2017) Selenium in the prevention of atherosclerosis and its underlying mechanisms. Metallomics 9:21–37
Messarah M, Klibet F, Boumendjel A, Abdennour C, Bouzerna N, Boulakoud MS, El Feki A (2012) Hepatoprotective role and antioxidant capacity of selenium on arsenic-induced liver injury in rats. Exp Toxicol Pathol 64(3):167–174
El-Demerdash FM, Nasr HM (2014) Antioxidant effect of selenium on lipid peroxidation, hyperlipidemia and biochemical parameters in rats exposed to diazinon. J Trace Elem Med Biol 28:89–93
Ben-Saad H, Kammoun I, Boudawara T, Zeghal KM, Hakim A, Amara IB (2017) Effects of selenium on tebuconazole-induced hepatotoxicity in adult rats. Res Rev Biosci 12(2):117
Ansar S, Alshehri SM, Abudawood M, Hamed SS, Ahamad T (2017) Antioxidant and hepatoprotective role of selenium against silver nanoparticles. Int J Nanomedicine 12:7789–7797
Mansour SA, Mohamed RI, Ali AR (2017) Ameliorating effect of selenium against deltamethrin induced hepato-renal dysfunction and oxidative stress to pregnant rats and their offspring. Journal of Toxicology and Pharmacology1(002)
Council of European Communities (1986) Council instructions about the protection of living animals used in scientific investigations. Off J Eur Commun (JO86/609/CEE) L358:1–18
Nakbi A, Tayeb W, Grissa A, Issaoui M, Dabbou S, Chargui I, Ellouz M, Miled A, Hammami M (2010) Effects of olive oil and its fractions on oxidative stress and the liver’s fatty acid composition in 2, 4-Dichlorophenoxyacetic acid-treated rats. Nutr Metab 7(1):80
Bradford M (1976) A rapid and sensitive method for the quantities of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem 72:248–254
Buege JA, Aust SD (1984) Microsomal lipid peroxidation. Methods Enzymol 105:302–310
Jollow DJ, Mitchel JR, Zamppaglione Z, Gillette JR (1974) Bromobenzene induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolites. Pharmacology 11:51–57
Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478
Flohe L, Gunzler WA (1984) Analysis of glutathione peroxidase. Methods Enzymol 105:114–121
Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity. Anal Biochem 161:559–566
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126
Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Biol Chem 249(22):7130–7139
Hould R (1984) Techniques d’histopathologie et de cytopathologie. Ed Maloine 19(21):225–227
Bailey SA, Zidell RH, Perry RW (2004) Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicol Pathol 32(4):448–466
Sellers RS, Mortan D, Michael B, Roome N, Johnson JK, Yano BL, Perry R, Schafer K (2007) Society of Toxicologic Pathology position paper: organ weight recommendations for toxicology studies. Toxicol Pathol 35(5):751–755
Maronpot RR, Yoshizawa K, Nyska A, Harada T, Flake G, Mueller G, Ward JM (2010) Hepatic enzyme induction: histopathology. Toxicol Pathol 38(5):776–795
Sharma P, Sharma A, Jasuja ND, Joshi SC (2014) Organophosphorus compounds and oxidative stress: a review. Toxicol Environ Chem 96(5):681–698
Tayeb W, Nakbi A, Trabelsi M, Attia N, Miled A, Hammami M (2010) Hepatotoxicity induced by sub-acute exposure of rats to 2,4-Dichlorophenoxyacetic acid based herbicide “Désormone lourd.”. J Hazard Mater 180(1–3):225–233
Mountassif D, Kabine M, Mounchid K, Mounaji K, Latruffe N, El Kebbaj MHS (2008) Biochemical and histological alterations of cellular metabolism from jerboa (Jaculusorientalis) by 2, 4-dichlorophenoxyacetic acid: effects on D-3-hydroxybutyrate dehydrogenase. Pestic Biochem Physiol 90(2):87–96
Celik I, Tuluce Y, Isik I (2006) Influence of subacute treatment of some plant growth regulators on serum marker enzymes and erythrocyte and tissue antioxidant defense and lipid peroxidation in rats. J Biochem Mol Toxicol 20:174–182
Al-Baroudi DA, Arafat R, El-kholy T (2014) Hepatoprotective effect of chamomile capitula extract against 2, 4-dichlorophenoxyacetic acid-induced hepatotoxicity in rats. Life Sci J 11:34–40
Bukowska B (2006) Toxicity of 2,4-dichlorophenoxyacetic acid - molecular mechanisms. Pol J Environ Stud 15:365–374
Abbassy MA, Marzouk MA, Mansour SA, Shaldam HA, Mossa AH (2014) Impact of oxidative stress and lipid peroxidation induced by lambdacyhalothrin on p450 in male rats: the ameliorating effect of zinc. J Environ Anal Toxicol 4:1–5
Ben Amara I, Soudani N, Troudi A, Bouaziz H, Boudawara T, Zeghal N (2011) Antioxidant effect of vitamin E and selenium on hepatotoxicity induced by dimethoate in female adult rats. Ecotoxicol Environ Saf 74:811–819
Zhou J, Huang K, Lei XG (2013) Selenium and diabetes—evidence from animal studies. Free Radic Biol Med 65:1548–1556
Stephen AO, James O, Ikoojo ER, Sunday AO (2016) Effects of selenium treatment on healing of acetic acid induced gastric ulcer in albino Wistar rats. Am J Biomed Res 4(1):18–22
Xia X, Hua C, Xue S, Shi B, Gui G, Zhang D, Wang X, Guo L (2016) Response of selenium dependent glutathione peroxidase in the freshwater bivalve Anodonta woodiana exposed to 2,4-dichlorophenol,2,4,6-trichlorophenol and pentachlorophenol. Fish Shellfish Immunol 55:499–509
Funding
This research is supported by the General Direction of Scientific Research and Development of Technology and Ministry of Higher Education and Scientific Research, DGRSDT-MESRS Algeria.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
All experimental procedures were conducted according to the International Guidelines for Laboratory Animal Care and Use (Council of European Communities) [39] and were approved by the University Ethics Committee.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tichati, L., Trea, F. & Ouali, K. Potential Role of Selenium Against Hepatotoxicity Induced by 2,4-Dichlorophenoxyacetic Acid in Albino Wistar Rats. Biol Trace Elem Res 194, 228–236 (2020). https://doi.org/10.1007/s12011-019-01773-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12011-019-01773-9