Skip to main content
Log in

From Selenium Absorption to Selenoprotein Degradation

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium is an essential dietary micronutrient. Ingested selenium is absorbed by the intestines and transported to the liver where it is mostly metabolized to selenocysteine (Sec). Sec is then incorporated into selenoproteins, including selenoprotein P (SELENOP), which is secreted into plasma and serves as a source of selenium to other tissues of the body. Herein, we provide an overview of the biology of selenium from its absorption and distribution to selenoprotein uptake and degradation, with a particular focus on the latter. Molecular mechanisms of selenoprotein degradation include the lysosome-mediated pathway for SELENOP and endoplasmic reticulum–mediated degradation of selenoproteins via ubiquitin-activated proteasomal pathways. Ubiquitin-activated pathways targeting full-length selenoproteins include the peroxisome proliferator–activated receptor gamma–dependent pathway and substrate-dependent ubiquitination. An alternate mechanism is utilized for truncated selenoproteins, in which cullin-RING E3 ubiquitin ligase 2 targets the defective proteins for ubiquitin-proteasomal degradation. Selenoproteins, particularly SELENOP, may have their Sec residues reutilized for new selenoprotein synthesis via Sec decomposition. This review will explore these aspects in selenium biology, providing insights to knowledge gaps that remain to be uncovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443

    Article  CAS  PubMed  Google Scholar 

  2. Davis CD, Tsuji PA, Milner JA (2012) Selenoproteins and cancer prevention. Annu Rev Nutr 32:73–95

    Article  CAS  PubMed  Google Scholar 

  3. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94(3):739–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42(6):785–797

    Article  CAS  PubMed  Google Scholar 

  5. Dumont E, Vanhaecke F, Cornelis R (2006) Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem 385(7):1304–1323

    Article  CAS  PubMed  Google Scholar 

  6. Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130(7):1653–1656

    Article  CAS  PubMed  Google Scholar 

  7. Vendeland SC, Deagen JT, Butler JA, Whanger PD (1994) Uptake of selenite, selenomethionine and selenate by brush border membrane vesicles isolated from rat small intestine. Biometals 7(4):305–312

    Article  CAS  PubMed  Google Scholar 

  8. Wolffram S, Grenacher B, Scharrer E (1988) Transport of selenate and sulphate across the intestinal brush-border membrane of pig jejunum by two common mechanism. Q J Exp Physiol 73(1):103–111

    Article  CAS  PubMed  Google Scholar 

  9. Cherest H et al (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145(3):627–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thiry C, Ruttens A, Pussemier L, Schneider YJ (2013) An in vitro investigation of species-dependent intestinal transport of selenium and the impact of this process on selenium bioavailability. Br J Nutr 109(12):2126–2134

    Article  CAS  PubMed  Google Scholar 

  11. Reasbeck PG, Barbezat GO, Weber FL Jr, Robinson MF, Thomson CD (1985) Selenium absorption by canine jejunum. Dig Dis Sci 30(5):489–494

    Article  CAS  PubMed  Google Scholar 

  12. Burk RF et al (2006) Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol Biomark Prev 15(4):804–810

    Article  CAS  Google Scholar 

  13. Xia Y, Hill KE, Byrne DW, Xu J, Burk RF (2005) Effectiveness of selenium supplements in a low-selenium area of China. Am J Clin Nutr 81(4):829–834

    Article  CAS  PubMed  Google Scholar 

  14. Van Dael P et al (2001) Selenium absorption and retention from a selenite- or selenate-fortified milk-based formula in men measured by a stable-isotope technique. Br J Nutr 85(2):157–163

    Article  PubMed  Google Scholar 

  15. Mangels AR, Moser-Veillon PB, Patterson KY, Veillon C (1990) Selenium utilization during human lactation by use of stable-isotope tracers. Am J Clin Nutr 52(4):621–627

    Article  CAS  PubMed  Google Scholar 

  16. Kato T et al (1992) Evidence for intestinal release of absorbed selenium in a form with high hepatic extraction. Am J Phys 262(5 Pt 1):G854–G858

    CAS  Google Scholar 

  17. Burk RF, Hill KE (2005) Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 25:215–235

    Article  CAS  PubMed  Google Scholar 

  18. Burk RF, Hill KE (2009) Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta 1790(11):1441–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Himeno S, Chittum HS, Burk RF (1996) Isoforms of selenoprotein P in rat plasma. Evidence for a full-length form and another form that terminates at the second UGA in the open reading frame. J Biol Chem 271(26):15769–15775

    Article  CAS  PubMed  Google Scholar 

  20. Ma S, Hill KE, Caprioli RM, Burk RF (2002) Mass spectrometric characterization of full-length rat selenoprotein P and three isoforms shortened at the C terminus. Evidence that three UGA codons in the mRNA open reading frame have alternative functions of specifying selenocysteine insertion or translation termination. J Biol Chem 277(15):12749–12754

    Article  CAS  PubMed  Google Scholar 

  21. Meplan C et al (2009) Relative abundance of selenoprotein P isoforms in human plasma depends on genotype, se intake, and cancer status. Antioxid Redox Signal 11(11):2631–2640

    Article  CAS  PubMed  Google Scholar 

  22. Kurokawa S, Eriksson S, Rose KL, Wu S, Motley AK, Hill S, Winfrey VP, McDonald WH, Capecchi MR, Atkins JF, Arnér ESJ, Hill KE, Burk RF (2014) Sepp1(UF) forms are N-terminal selenoprotein P truncations that have peroxidase activity when coupled with thioredoxin reductase-1. Free Radic Biol Med 69:67–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burk RF, Hill KE (2015) Regulation of selenium metabolism and transport. Annu Rev Nutr 35:109–134

    Article  CAS  PubMed  Google Scholar 

  24. Sunde RA, Raines AM, Barnes KM, Evenson JK (2009) Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome. Biosci Rep 29(5):329–338

    Article  CAS  PubMed  Google Scholar 

  25. Low SC, Grundner-Culemann E, Harney JW, Berry MJ (2000) SECIS-SBP2 interactions dictate selenocysteine incorporation efficiency and selenoprotein hierarchy. EMBO J 19(24):6882–6890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berry MJ (2005) Insights into the hierarchy of selenium incorporation. Nat Genet 37(11):1162–1163

    Article  CAS  PubMed  Google Scholar 

  27. Kuhbacher M et al (2009) The brain selenoproteome: priorities in the hierarchy and different levels of selenium homeostasis in the brain of selenium-deficient rats. J Neurochem 110(1):133–142

    Article  PubMed  CAS  Google Scholar 

  28. Hill KE, Zhou J, McMahan WJ, Motley AK, Atkins JF, Gesteland RF, Burk RF (2003) Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 278(16):13640–13646

    Article  CAS  PubMed  Google Scholar 

  29. Weiss Sachdev S, Sunde RA (2001) Selenium regulation of transcript abundance and translational efficiency of glutathione peroxidase-1 and -4 in rat liver. Biochem J 357(Pt 3:851–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT (2002) Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. Proc Natl Acad Sci U S A 99(25):15932–15936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burk RF, Hill KE, Motley AK, Austin LM, Norsworthy BK (2006) Deletion of selenoprotein P upregulates urinary selenium excretion and depresses whole-body selenium content. Biochim Biophys Acta 1760(12):1789–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hill KE, Wu S, Motley AK, Stevenson TD, Winfrey VP, Capecchi MR, Atkins JF, Burk RF (2012) Production of selenoprotein P (Sepp1) by hepatocytes is central to selenium homeostasis. J Biol Chem 287(48):40414–40424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meplan C et al (2007) Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study). FASEB J 21(12):3063–3074

    Article  CAS  PubMed  Google Scholar 

  34. Ekoue DN, Zaichick S, Valyi-Nagy K, Picklo M, Lacher C, Hoskins K, Warso MA, Bonini MG, Diamond AM (2017) Selenium levels in human breast carcinoma tissue are associated with a common polymorphism in the gene for SELENOP (Selenoprotein P). J Trace Elem Med Biol 39:227–233

    Article  CAS  PubMed  Google Scholar 

  35. Meplan C et al (2013) Association between polymorphisms in glutathione peroxidase and selenoprotein P genes, glutathione peroxidase activity, HRT use and breast cancer risk. PLoS One 8(9):e73316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mao J, Vanderlelie JJ, Perkins AV, Redman CWG, Ahmadi KR, Rayman MP (2016) Genetic polymorphisms that affect selenium status and response to selenium supplementation in United Kingdom pregnant women. Am J Clin Nutr 103(1):100–106

    Article  CAS  PubMed  Google Scholar 

  37. Hill KE, Zhou J, Austin LM, Motley AK, Ham AJL, Olson GE, Atkins JF, Gesteland RF, Burk RF (2007) The selenium-rich C-terminal domain of mouse selenoprotein P is necessary for the supply of selenium to brain and testis but not for the maintenance of whole body selenium. J Biol Chem 282(15):10972–10980

    Article  CAS  PubMed  Google Scholar 

  38. Olson GE, Winfrey VP, NagDas SK, Hill KE, Burk RF (2007) Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem 282(16):12290–12297

    Article  CAS  PubMed  Google Scholar 

  39. Andersen OM, Benhayon D, Curran T, Willnow TE (2003) Differential binding of ligands to the apolipoprotein E receptor 2. Biochemistry 42(31):9355–9364

    Article  CAS  PubMed  Google Scholar 

  40. Andersen OM et al (2003) Essential role of the apolipoprotein E receptor-2 in sperm development. J Biol Chem 278(26):23989–23995

    Article  CAS  PubMed  Google Scholar 

  41. Burk RF, Hill KE, Olson GE, Weeber EJ, Motley AK, Winfrey VP, Austin LM (2007) Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed. J Neurosci 27(23):6207–6211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Burk RF, Hill KE, Motley AK, Winfrey VP, Kurokawa S, Mitchell SL, Zhang W (2014) Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J 28(8):3579–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kurokawa S, Bellinger FP, Hill KE, Burk RF, Berry MJ (2014) Isoform-specific binding of selenoprotein P to the beta-propeller domain of apolipoprotein E receptor 2 mediates selenium supply. J Biol Chem 289(13):9195–9207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shetty S, Marsicano JR, Copeland PR (2018) Uptake and utilization of selenium from selenoprotein P. Biol Trace Elem Res 181(1):54–61

    Article  CAS  PubMed  Google Scholar 

  45. Cuitino L, Matute R, Retamal C, Bu G, Inestrosa NC, Marzolo MP (2005) ApoER2 is endocytosed by a clathrin-mediated process involving the adaptor protein Dab2 independent of its Rafts’ association. Traffic 6(9):820–838

    Article  CAS  PubMed  Google Scholar 

  46. Olson GE, Winfrey VP, Hill KE, Burk RF (2008) Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J Biol Chem 283(11):6854–6860

    Article  CAS  PubMed  Google Scholar 

  47. Chiu-Ugalde J, Theilig F, Behrends T, Drebes J, Sieland C, Subbarayal P, Köhrle J, Hammes A, Schomburg L, Schweizer U (2010) Mutation of megalin leads to urinary loss of selenoprotein P and selenium deficiency in serum, liver, kidneys and brain. Biochem J 431(1):103–111

    Article  CAS  PubMed  Google Scholar 

  48. Zheng G, Bachinsky DR, Stamenkovic I, Strickland DK, Brown D, Andres G, McCluskey RT (1994) Organ distribution in rats of two members of the low-density lipoprotein receptor gene family, gp330 and LRP/alpha 2MR, and the receptor-associated protein (RAP). J Histochem Cytochem 42(4):531–542

    Article  CAS  PubMed  Google Scholar 

  49. Scharpf M, Schweizer U, Arzberger T, Roggendorf W, Schomburg L, Köhrle J (2007) Neuronal and ependymal expression of selenoprotein P in the human brain. J Neural Transm 114(7):877–884

    Article  CAS  PubMed  Google Scholar 

  50. Kurokawa S, Hill KE, McDonald WH, Burk RF (2012) Long isoform mouse selenoprotein P (Sepp1) supplies rat myoblast L8 cells with selenium via endocytosis mediated by heparin binding properties and apolipoprotein E receptor-2 (ApoER2). J Biol Chem 287(34):28717–28726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Myung J, Kim KB, Crews CM (2001) The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev 21(4):245–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428

    Article  CAS  PubMed  Google Scholar 

  53. Dunn WA Jr (1994) Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol 4(4):139–143

    Article  CAS  PubMed  Google Scholar 

  54. Lee MJ, Yaffe MB (2014) Protein regulation in signal transduction. In: Cantley LC et al (eds) Signal Transduction - Principles, Pathways, and Processes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 30–50

    Google Scholar 

  55. Lin HC et al (2015) SELENOPROTEINS. CRL2 aids elimination of truncated selenoproteins produced by failed UGA/Sec decoding. Science 349(6243):91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sabbagh M, Van Hoewyk D (2012) Malformed selenoproteins are removed by the ubiquitin--proteasome pathway in Stanleya pinnata. Plant Cell Physiol 53(3):555–564

    Article  CAS  PubMed  Google Scholar 

  57. Lee, J.H., et al. (2019) Degradation of selenoprotein S and selenoprotein K through PPARgamma-mediated ubiquitination is required for adipocyte differentiation. Cell Death Differ 26(6):1007-1023

    Article  CAS  Google Scholar 

  58. Gereben B, Goncalves C, Harney JW, Larsen PR, Bianco AC (2000) Selective proteolysis of human type 2 deiodinase: a novel ubiquitin-proteasomal mediated mechanism for regulation of hormone activation. Mol Endocrinol 14(11):1697–1708

    Article  CAS  PubMed  Google Scholar 

  59. Steinsapir J, Bianco AC, Buettner C, Harney J, Larsen PR (2000) Substrate-induced down-regulation of human type 2 deiodinase (hD2) is mediated through proteasomal degradation and requires interaction with the enzyme's active center. Endocrinology 141(3):1127–1135

    Article  CAS  PubMed  Google Scholar 

  60. Kim CY, Kim KH (2013) Dexamethasone-induced selenoprotein S degradation is required for adipogenesis. J Lipid Res 54(8):2069–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rusnac DV, Lin HC, Canzani D, Tien KX, Hinds TR, Tsue AF, Bush MF, Yen HCS, Zheng N (2018) Recognition of the diglycine C-end degron by CRL2(KLHDC2) ubiquitin ligase. Mol Cell 72(5):813–822 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hotamisligil GS, Davis RJ (2014) Cell signaling and stress responses. In: Cantley LC et al (eds) Signal Transduction - Principles, Pathways, and Processes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 345–364

    Google Scholar 

  63. Tsai YC, Weissman AM (2010) The unfolded protein response, degradation from endoplasmic reticulum and cancer. Genes Cancer 1(7):764–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu X, Rapoport TA (2018) Mechanistic insights into ER-associated protein degradation. Curr Opin Cell Biol 53:22–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reeves MA, Hoffmann PR (2009) The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 66(15):2457–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baqui MM et al (2000) Distinct subcellular localization of transiently expressed types 1 and 2 iodothyronine deiodinases as determined by immunofluorescence confocal microscopy. Endocrinology 141(11):4309–4312

    Article  CAS  PubMed  Google Scholar 

  67. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429(6994):841–847

    Article  CAS  PubMed  Google Scholar 

  68. Schulze A, Standera S, Buerger E, Kikkert M, van Voorden S, Wiertz E, Koning F, Kloetzel PM, Seeger M (2005) The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J Mol Biol 354(5):1021–1027

    Article  CAS  PubMed  Google Scholar 

  69. Turanov AA, Shchedrina VA, Everley RA, Lobanov AV, Yim SH, Marino SM, Gygi SP, Hatfield DL, Gladyshev VN (2014) Selenoprotein S is involved in maintenance and transport of multiprotein complexes. Biochem J 462(3):555–565

    Article  CAS  PubMed  Google Scholar 

  70. Gao Y, Feng HC, Walder K, Bolton K, Sunderland T, Bishara N, Quick M, Kantham L, Collier GR (2004) Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress - SelS is a novel glucose-regulated protein. FEBS Lett 563(1–3):185–190

    Article  CAS  PubMed  Google Scholar 

  71. van den Boom J, Meyer H (2018) VCP/p97-mediated unfolding as a principle in protein homeostasis and signaling. Mol Cell 69(2):182–194

    Article  PubMed  CAS  Google Scholar 

  72. Lee JH, Park KJ, Jang JK, Jeon YH, Ko KY, Kwon JH, Lee SR, Kim IY (2015) Selenoprotein S-dependent selenoprotein K binding to p97(VCP) protein is essential for endoplasmic reticulum-associated degradation. J Biol Chem 290(50):29941–29952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shchedrina VA et al (2011) Selenoprotein K binds multiprotein complexes and is involved in the regulation of endoplasmic reticulum homeostasis. J Biol Chem 286(50):42937–42948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lowell BB (1999) PPARgamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell 99(3):239–242

    Article  CAS  PubMed  Google Scholar 

  75. Cekanova M et al (2008) Gene alterations by peroxisome proliferator-activated receptor gamma agonists in human colorectal cancer cells. Int J Oncol 32(4):809–819

    CAS  PubMed  Google Scholar 

  76. Watanabe M et al (2015) The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARgamma. Elife 4:p. e05615

    Article  Google Scholar 

  77. Hou Y, Moreau F, Chadee K (2012) PPARgamma is an E3 ligase that induces the degradation of NFkappaB/p65. Nat Commun 3:1300

    Article  PubMed  CAS  Google Scholar 

  78. Hou Y, Gao J, Xu H, Xu Y, Zhang Z, Xu Q, Zhang C (2014) PPARgamma E3 ubiquitin ligase regulates MUC1-C oncoprotein stability. Oncogene 33(49):5619–5625

    Article  CAS  PubMed  Google Scholar 

  79. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137(1):133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Korbecki J, Bobinski R, Dutka M (2019) Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res 68:443–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim CY et al (2011) Selenium inhibits adipogenesis through suppression of ER-stress and induction of selenoprotein S. In: Experimental Biology 2011. FASEB, Washington, DC

    Google Scholar 

  82. Olsson M, Olsson B, Jacobson P, Thelle DS, Björkegren J, Walley A, Froguel P, Carlsson LM, Sjöholm K (2011) Expression of the selenoprotein S (SELS) gene in subcutaneous adipose tissue and SELS genotype are associated with metabolic risk factors. Metabolism 60(1):114–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pitts MW, Hoffmann PR (2018) Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium 70:76–86

    Article  CAS  PubMed  Google Scholar 

  84. Fredericks, G.J., et al. (2017) Selenoprotein K Increases Efficiency of DHHC6 Catalyzed Protein Palmitoylation by Stabilizing the Acyl-DHHC6 Intermediate. Antioxidants (Basel) 7(1):4.

    Article  PubMed Central  CAS  Google Scholar 

  85. Norton RL, Fredericks GJ, Huang Z, Fay JD, Hoffmann FKW, Hoffmann PR (2017) Selenoprotein K regulation of palmitoylation and calpain cleavage of ASAP2 is required for efficient FcgammaR-mediated phagocytosis. J Leukoc Biol 101(2):439–448

    Article  CAS  PubMed  Google Scholar 

  86. Ren W, Jhala US, Du K (2013) Proteomic analysis of protein palmitoylation in adipocytes. Adipocyte 2(1):17–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bianco AC, Salvatore D, Gereben B́, Berry MJ, Larsen PR (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23(1):38–89

    Article  CAS  PubMed  Google Scholar 

  88. Marsili A, Zavacki AM, Harney JW, Larsen PR (2011) Physiological role and regulation of iodothyronine deiodinases: a 2011 update. J Endocrinol Investig 34(5):395–407

    Article  CAS  Google Scholar 

  89. Steinsapir J, Harney J, Larsen PR (1998) Type 2 iodothyronine deiodinase in rat pituitary tumor cells is inactivated in proteasomes. J Clin Invest 102(11):1895–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. St Germain DL (1988) The effects and interactions of substrates, inhibitors, and the cellular thiol-disulfide balance on the regulation of type II iodothyronine 5′-deiodinase. Endocrinology 122(5):1860–1868

    Article  CAS  PubMed  Google Scholar 

  91. Silva JE, Leonard JL (1985) Regulation of rat cerebrocortical and adenohypophyseal type II 5′-deiodinase by thyroxine, triiodothyronine, and reverse triiodothyronine. Endocrinology 116(4):1627–1635

    Article  CAS  PubMed  Google Scholar 

  92. Sagar GD et al (2007) Ubiquitination-induced conformational change within the deiodinase dimer is a switch regulating enzyme activity. Mol Cell Biol 27(13):4774–4783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dentice M, Bandyopadhyay A, Gereben B, Callebaut I, Christoffolete MA, Kim BW, Nissim S, Mornon JP, Zavacki AM, Zeöld A, Capelo LP, Curcio-Morelli C, Ribeiro R, Harney JW, Tabin CJ, Bianco AC (2005) The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Biol 7(7):698–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Botero D, Gereben B, Goncalves C, de Jesus LA, Harney JW, Bianco AC (2002) Ubc6p and ubc7p are required for normal and substrate-induced endoplasmic reticulum-associated degradation of the human selenoprotein type 2 iodothyronine monodeiodinase. Mol Endocrinol 16(9):1999–2007

    Article  CAS  PubMed  Google Scholar 

  95. Curcio-Morelli C, Zavacki AM, Christofollete M, Gereben B, de Freitas BC, Harney JW, Li Z, Wu G, Bianco AC (2003) Deubiquitination of type 2 iodothyronine deiodinase by von Hippel-Lindau protein-interacting deubiquitinating enzymes regulates thyroid hormone activation. J Clin Invest 112(2):189–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arrojo EDR et al (2013) The type II deiodinase is retrotranslocated to the cytoplasm and proteasomes via p97/Atx3 complex. Mol Endocrinol 27(12):2105–2115

    Article  CAS  Google Scholar 

  97. Zavacki AM, Arrojo e Drigo R, Freitas BCG, Chung M, Harney JW, Egri P, Wittmann G, Fekete C, Gereben B, Bianco AC (2009) The E3 ubiquitin ligase TEB4 mediates degradation of type 2 iodothyronine deiodinase. Mol Cell Biol 29(19):5339–5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fekete C, Freitas BCG, Zeöld Á, Wittmann Ǵ, Kádár A, Liposits Z, Christoffolete MA, Singru P, Lechan RM, Bianco AC, Gereben B́ (2007) Expression patterns of WSB-1 and USP-33 underlie cell-specific posttranslational control of type 2 deiodinase in the rat brain. Endocrinology 148(10):4865–4874

    Article  CAS  PubMed  Google Scholar 

  99. Zhang X, Jiang Y, Han W, Liu A, Xie X, Han C, Fan C, Wang H, Zhang H, Ding S, Shan Z, Teng W (2016) Effect of prolonged iodine overdose on type 2 iodothyronine deiodinase ubiquitination-related enzymes in the rat pituitary. Biol Trace Elem Res 174(2):377–386

    Article  CAS  PubMed  Google Scholar 

  100. Cai W, Yang H (2016) The structure and regulation of Cullin 2 based E3 ubiquitin ligases and their biological functions. Cell Div 11:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Emanuele MJ et al (2011) Global identification of modular cullin-RING ligase substrates. Cell 147(2):459–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6(1):9–20

    Article  CAS  PubMed  Google Scholar 

  103. Kamura T, Maenaka K, Kotoshiba S, Matsumoto M, Kohda D, Conaway RC, Conaway JW, Nakayama KI (2004) VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev 18(24):3055–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10(9):623–635

    Article  CAS  PubMed  Google Scholar 

  105. Johnson DE, Ostrowski P, Jaumouillé V, Grinstein S (2016) The position of lysosomes within the cell determines their luminal pH. J Cell Biol 212(6):677–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700

    Article  CAS  PubMed  Google Scholar 

  107. Hussain MM (2001) Structural, biochemical and signaling properties of the low-density lipoprotein receptor gene family. Front Biosci 6:D417–D428

    CAS  PubMed  Google Scholar 

  108. Esaki N, Nakamura T, Tanaka H, Soda K (1982) Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine. Mammalian distribution and purification and properties of pig liver enzyme. J Biol Chem 257(8):4386–4391

    Article  CAS  PubMed  Google Scholar 

  109. Mihara H, Kurihara T, Watanabe T, Yoshimura T, Esaki N (2000) cDNA cloning, purification, and characterization of mouse liver selenocysteine lyase. Candidate for selenium delivery protein in selenoprotein synthesis. J Biol Chem 275(9):6195–6200

    Article  CAS  PubMed  Google Scholar 

  110. Kurokawa S et al (2011) Mammalian selenocysteine lyase is involved in selenoprotein biosynthesis. J Nutr Sci Vitaminol (Tokyo) 57(4):298–305

    Article  CAS  Google Scholar 

  111. Raman AV, Pitts MW, Seyedali A, Hashimoto AC, Seale LA, Bellinger FP, Berry MJ (2012) Absence of selenoprotein P but not selenocysteine lyase results in severe neurological dysfunction. Genes Brain Behav 11(5):601–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Seale LA, Hashimoto AC, Kurokawa S, Gilman CL, Seyedali A, Bellinger FP, Raman AV, Berry MJ (2012) Disruption of the selenocysteine lyase-mediated selenium recycling pathway leads to metabolic syndrome in mice. Mol Cell Biol 32(20):4141–4154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ogawa-Wong, A.N., et al. (2018) Sexual Dimorphism in the Selenocysteine Lyase Knockout Mouse. Nutrients 10(2):159.

  114. Byrns CN, Pitts MW, Gilman CA, Hashimoto AC, Berry MJ (2014) Mice lacking selenoprotein P and selenocysteine lyase exhibit severe neurological dysfunction, neurodegeneration, and audiogenic seizures. J Biol Chem 289(14):9662–9674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pitts MW, Kremer PM, Hashimoto AC, Torres DJ, Byrns CN, Williams CS, Berry MJ (2015) Competition between the brain and testes under selenium-compromised conditions: insight into sex differences in selenium metabolism and risk of neurodevelopmental disease. J Neurosci 35(46):15326–15338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhuo P, Diamond AM (2009) Molecular mechanisms by which selenoproteins affect cancer risk and progression. Biochim Biophys Acta 1790(11):1546–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. White PJ (2016) Selenium accumulation by plants. Ann Bot 117(2):217–235

    CAS  PubMed  Google Scholar 

  118. El Kassis E et al (2007) Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiol 143(3):1231–1241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  PubMed  Google Scholar 

  120. Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14(8):436–442

    Article  CAS  PubMed  Google Scholar 

  121. White PJ (2018) Selenium metabolism in plants. Biochim Biophys Acta Gen Subj 1862:2333–2342

    Article  CAS  PubMed  Google Scholar 

  122. Vallentine, P., et al. (2014) The ubiquitin-proteasome pathway protects Chlamydomonas reinhardtii against selenite toxicity, but is impaired as reactive oxygen species accumulate. AoB Plants, 6: plu062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Supported by United States National Institutes of Health grants R01DK47320 (NIDDK), R01DK47320-S1 (Office of Dietary Supplements) and G12MD007601 (NIMHD) to Marla J. Berry, and U54MD007601—subproject 5544 (NIMHD) to Lucia A. Seale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia A. Seale.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, H.Y., Alfulaij, N., Berry, M.J. et al. From Selenium Absorption to Selenoprotein Degradation. Biol Trace Elem Res 192, 26–37 (2019). https://doi.org/10.1007/s12011-019-01771-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01771-x

Keywords

Navigation