Skip to main content

Advertisement

Log in

Mineral Composition Evaluation in Energy Drinks Using ICP OES and Chemometric Tools

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study reports the simultaneous determination of the total concentrations of Al, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, and Zn in 17  samples of commercial energy drinks through inductively coupled plasma optical emission spectrometry and multivariate methods, such as Pearson correlation and principal component analysis (PCA), in order to conduct a more thorough evaluation of the original data. The samples studied were stored in two types of containers (polyethylene terephthalate bottles and aluminum cans) and purchased in the city of Belém (State of Pará, Brazil). The results showed high Na content in energy drinks, followed by K, Ca, and Mg. The accuracy of the optimized method was evaluated with the certified reference materials to assess trace elements in water (NIST 1643e); the resultant recoveries varied from 83 to 105%. Energy drinks stored in cans presented higher levels of aluminum and magnesium, while those bottled in polyethylene terephthalate bottles had a higher K content. There were significant differences between the observed Na concentrations and the values dictated on the drink package. Furthermore, PCA explained 70.38% of the total variance, allowing for an evaluation of the degree of similarity between the energy drinks studied and showing that the main contributions to the formation of groups are related to Fe, Na, Mg, and Zn contents. These results will be used to better understand the distribution of inorganic elements contained in energy drinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bulut B, Beyhun NE, Topbaş M, Çan G (2014) Energy drink use in university students and associated factors. J Community Health 39:1004–1011. https://doi.org/10.1007/s10900-014-9849-3

    Article  PubMed  Google Scholar 

  2. Arria AM, Bugbee BA, Caldeira KM, Vincent KB (2014) Evidence and knowledge gaps for the association between energy drink use and high-risk behaviors among adolescents and young adults. Nutr Rev 72:87–97. https://doi.org/10.1111/nure.12129

    Article  PubMed  PubMed Central  Google Scholar 

  3. Emond JA, Gilbert-Diamond D, Tanski SE, Sargent JD (2014) Energy drink consumption and the risk of alcohol use disorder among a national sample of adolescents and young adults. J Pediatr 165:1194–1200. https://doi.org/10.1016/j.jpeds.2014.08.050

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heckman MA, Sherry K, Gonzalez De Mejia E (2010) Energy drinks: an assessment of their market size, consumer demographics, ingredient profile, functionality, and regulations in the United States. Compr Rev Food Sci Food Saf 9:303–317. https://doi.org/10.1111/j.1541-4337.2010.00111.x

    Article  CAS  Google Scholar 

  5. Szymczycha-Madeja A, Welna M, Pohl P (2013) Determination of elements in energy drinks by ICP OES with minimal sample preparation. J Braz Chem Soc 24(10):1606–1612. https://doi.org/10.5935/0103-5053.20130202

    Article  CAS  Google Scholar 

  6. Rath M, BSN, FNP-s (2012) Energy drinks: what is all the hype? The dangers of energy drink consumption. J Am Acad Nurse Pract 24:70–76. https://doi.org/10.1111/j.1745-7599.2011.00689.x

    Article  PubMed  Google Scholar 

  7. Wiklund U, Karlsson M, Öström M, Messner T (2009) Influence of energy drinks and alcohol on post-exercise heart rate recovery and heart rate variability. Clin Physiol Funct Imaging 29:74–80. https://doi.org/10.1111/j.1475-097X.2008.00837.x

    Article  PubMed  Google Scholar 

  8. Reissig CJ, Strain EC, Griffiths RR (2009) Caffeinated energy drinks—a growing problem. Drug Alcohol Depend 99:1–10. https://doi.org/10.1016/j.drugalcdep.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  9. Franco F (1998) Tabela de composição de alimentos, 9th edn. Atheneu, São Paulo

    Google Scholar 

  10. Harper HA, Mayes RA (1982) Manual de Química fisiologica, 5th edn. Atheneu, São Paulo

    Google Scholar 

  11. Massey R, Taylor S (1991) Aluminium in food and the environment. Royal Society of Chemistry, London

    Google Scholar 

  12. Tomljenovic L (2011) Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis 23:567–598. https://doi.org/10.3233/JAD-2010-101494

    Article  CAS  PubMed  Google Scholar 

  13. Uauy R, Olivares M, González M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952–959. https://doi.org/10.1093/ajcn/67.5.952S

    Article  Google Scholar 

  14. Bothwell T, H; Charlton RW, Cook JD, Finch CA (1979) Iron metabolism in man. Blackwell Scientific, Oxford

    Google Scholar 

  15. Siegmund B, Derler K, Pfannhauser W (2004) Chemical and sensory effects of glass and laminated carton packages on fruit juice products – still a controversial topic. Food Sci Technol 37:481–488. https://doi.org/10.1016/j.lwt.2003.11.005

    Article  CAS  Google Scholar 

  16. Jellesen MS, Rasmussen AA, Hilbert LR (2006) A review of metal release in the food industry. Mater Corros 57(5):387–393. https://doi.org/10.1002/maco.200503953

    Article  CAS  Google Scholar 

  17. Castro MTPO, Baccan N (2005) Application of factorial design in optimization of preconcentration procedure for copper determination in soft drink by flame atomic absorption spectrometry. Talanta 65:1264–1269. https://doi.org/10.1016/j.talanta.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  18. Nascentes CC, Kamogawa MY, Fernandes KG, Arruda MAZ, Nogueira ARA, Nóbrega JA (2005) Direct determination of Cu, Mn, Pb and Zn in beer by thermospray flame furnace atomic absorption spectrometry. Spectrochim Acta B 60:749–753. https://doi.org/10.1016/j.sab.2005.02.012

    Article  CAS  Google Scholar 

  19. Schiavo D, Neira JY, Nóbrega JA (2008) Direct determination of Cd, Cu and Pb in wines and grape juices by thermospray flame furnace atomic absorption spectromety. Talanta 76:1113–11118. https://doi.org/10.1016/j.talanta.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  20. Sweileh JA, Misef KY, El-Sheikh AH, Sunjuk MS (2014) Development of a new method for determination of aluminum (Al) in Jordanian foods and drinks: solid phase extraction and adsorption of Al3+-D-mannitol on carbon nanotubes. J Food Compos Anal 33:6–13. https://doi.org/10.1016/j.jfca.2013.10.002

    Article  CAS  Google Scholar 

  21. de Amorim FR, Bof C, Franco MB, da Silva JBB, Nascentes CC (2006) Comparative study of conventional and multivariate methods for aluminum determination in soft drinks by graphite furnace atomic absorption spectrometry. Microchem J 82:168–173. https://doi.org/10.1016/j.microc.2006.01.011

    Article  CAS  Google Scholar 

  22. Alkıs IM, Öz S, Atakol A, Yılmaz N, Anlı RE, Atakol O (2014) Investigation of heavy metal concentrations in some Turkish wines. J Food Compos Anal 33:105–110. https://doi.org/10.1016/j.jfca.2013.11.006

    Article  CAS  Google Scholar 

  23. Francisco BBA, Brum DM, Cassella RJ (2015) Determination of metais in soft drinks packed in different materials by ETAAS. Food Chem 185:488–494. https://doi.org/10.1016/j.foodchem.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  24. Ozbek N, Akman S (2015) Determination of boron in Turkish wines by microwave plasma atomic emission spectrometry. LWT Food Sci Technol 61:532–535. https://doi.org/10.1016/j.lwt.2014.11.047

    Article  CAS  Google Scholar 

  25. Froes RES, Borges Neto W, Naveira RLP, Silva NC, Nascentes CC, Silva JBB (2009) Exploratory analysis and inductively coupled plasma optical emission spectrometry (ICP OES) applied in the determination of metals in soft drinks. Microchem J 92:68–72. https://doi.org/10.1016/j.microc.2008.12.008

    Article  CAS  Google Scholar 

  26. Bingol M, Yentur G, Er B, Oktem AB (2010) Determination of some heavy metal levels in soft drinks from Turkey using ICP-OES method. Czech J Food Sci 28(3):213–216. https://doi.org/10.17221/158/2008-CJFS

    Article  CAS  Google Scholar 

  27. Leśniewicz A, Grzesiak M, Żyrnicki W, Borkowska-Burnecka J (2016) Mineral composition and nutritive value of isotonic and energy drinks. Biol Trace Elem Res 170:485–495. https://doi.org/10.1007/s12011-015-0471-8

    Article  CAS  PubMed  Google Scholar 

  28. Nkono NA, Asubioj OI (1997) Trace elements in bottled and soft drinks in Nigeria – a preliminary study. Sci Total Environ 208:161–163. https://doi.org/10.1016/S0048-9697(97)00289-1

    Article  CAS  PubMed  Google Scholar 

  29. Kılıç S, Yenisoy-Karakaş S, Kılıç M (2015) Metal contamination in fruit juices in Turkey: method validation and uncertainty budget. Food Anal Methods 8:2487–2495. https://doi.org/10.1007/s12161-015-0136-4

    Article  Google Scholar 

  30. Zucchi OLAD, Moreira S, Salvador MJ, Santos LL (2005) Multielement analysis of soft drinks by X-ray fluorescence spectrometry. J Agric Food Chem 53:7863–7869. https://doi.org/10.1021/jf0510945

    Article  CAS  PubMed  Google Scholar 

  31. Mingoti SA (2005) Análise de Dados através de Métodos de Estatística Multivariada. Editora UFMG, Belo Horizonte

  32. Beebe KR, Pell RJ, Seasholtz MB (1998) Chemometrics: a practical guide. Wiley, New York

    Google Scholar 

  33. de Barros Neto B, Scarminio IS, Bruns RE (2006) 25 anos de quimiometria no Brasil. Quim Nova 29:1401–1406. https://doi.org/10.1590/S0100-40422006000600042

    Article  Google Scholar 

  34. Ferreira MMC, Antunes AM, Melgo MS, Volpe PLO (1999) Quimiometria I: calibração multivariada, um tutorial. Quim Nova 22:724–731. https://doi.org/10.1590/S0100-40421999000500016

    Article  CAS  Google Scholar 

  35. Hair JF, Tathan RL, Anderson RE (2005) Análise multivariada de dados, 5a edn. Bookman, Porto Alegre

    Google Scholar 

  36. Thomsen V, Roberts G, Burguess K (2000) The concepts of background equivalent concentration in spectroscopy. Spectroscopy 15:33

    CAS  Google Scholar 

  37. Rexan Beverage Can Americas SA (2004) Descritivo de processo. São Paulo, Brazil

    Google Scholar 

  38. ANVISA (2003) Technical regulation on food labeling. Resolution - RDC n° 360, December 23, 2003. Retrieved june 12, 2017 from: http://www.abic.com.br/publique/media/CONS_leg_resolucao360-03.pdf

  39. Shun-Xing L, Lu-Xiu L, Jing L, Feng-Ying Z, Qing-Xiang W, Wen W (2010) Speciation analysis, bioavailability and risk assessment of trace metals in herbal decoctions using a combined technique of in vitro digestion and biomembrane filtration as sample pretreatment method. Phytochem Anal 21:590–596. https://doi.org/10.1002/pca.1239

    Article  CAS  Google Scholar 

  40. Otten JJ, Hellwig JP, Meyers LD (2006) Dietary reference intakes. The essential guide to nutrient requirements. The National Academies Press: Washington, USA. Retrieved June 12, 2017 from: https://www.nal.usda.gov/sites/default/files/fnic_uploads/DRIEssentialGuideNutReq.pdf

  41. WHO (1996) Trace elements in human nutrition and health, Geneva. Retrieved June 30, 2017 from: www.who.int

  42. WHO (2011). Guidelines for drinking water quality. 4th edition, Geneva, Switzerland, 307–442. Retrieved June 30, 2017 from: www.who.int

  43. Carvalho FIM, Dantas Filho HA (2014) Estudo da qualidade da gasolina tipo A e sua composição química empregando análise de componentes principais. Quim Nova 37:33–38. https://doi.org/10.1590/S0100-40422014000100007

    Article  CAS  Google Scholar 

  44. Vandeginste BGM, Massart DL, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J (1998) Handbook of chemometrics and qualimetrics: Part b. Elsevier, Amsterdam

    Google Scholar 

Download references

Funding

This research was funded by Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação Amazônia de Amparo a Estudos e Pesquisas (FAPESPA). J.B.P.J was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly das Graças Fernandes Dantas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, A.S., Junior, J.B.P., de Araújo Gomes, A. et al. Mineral Composition Evaluation in Energy Drinks Using ICP OES and Chemometric Tools. Biol Trace Elem Res 194, 284–294 (2020). https://doi.org/10.1007/s12011-019-01770-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01770-y

Keywords

Navigation