Skip to main content

Advertisement

Log in

The Functional Analysis of Selenium-Related Genes and Magnesium-Related Genes in the Gene Expression Profile Microarray in the Peripheral Blood Mononuclear Cells of Keshan Disease

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Keshan disease (KD) is an endemic cardiomyopathy with high mortality. Selenium (Se) deficiency is closely related to KD, while magnesium (Mg) plays many critical roles in the cardiovascular function. The molecular mechanism of KD pathogenesis is still unclear. Until now, we have not found any studies investigating the association between Se- or Mg-related genes and KD. In this study, oligonucleotide microarray analysis was used to identify the differentially expressed genes in the peripheral blood mononuclear cells between KD patients and normal controls. Next, human metabolome database (HMDB) was used to screen Se- and Mg-related genes. Function classification, gene pathway, and interaction network of Se- and Mg-related genes in KD peripheral blood mononuclear cells were defined by FunRich (functional enrichment analysis tool). Among 83 differentially expressed genes, five Se-related (DIO2, GPX1, GPX2, GPX4, and GPX7) and five Mg-related (ACSL6, EYA4, IDH2, PPM1A, and STK11) genes were recognized from HMDB. Two significant biological processes (energy pathways and metabolism), one molecular function (peroxidase activity), one biological pathway (glutathione redox reactions I), and one gene interaction network were constituted from Se-related and Mg-related genes. Se-related gene DIO2 and Mg-related genes STK11 and IDH2 may have key roles in the myocardial dysfunction of KD. However, we still have not obtained any interaction between Se-related gene and Mg-related gene. The interactions between RPS6KB1, PTEN, ATM, HSP90AA1, SNRK, PRKAA2, SMARCA4, HSPA1A, and STK11 may play important roles in the abnormal cardiac function of KD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang S, Lv Y, Wang Y, du P, Tan W, Lammi MJ, Guo X (2018) Network analysis of Se- and Zn-related proteins in the serum proteomics expression profile of the endemic dilated cardiomyopathy Keshan disease. Biol Trace Elem Res 183:40–48. https://doi.org/10.1007/s12011-017-1063-6

    Article  CAS  PubMed  Google Scholar 

  2. Tan J, Zhu W, Wang W et al (2002) Selenium in soil and endemic diseases in China. Sci Total Environ 284:227–235. https://doi.org/10.1016/S0048-9697(01)00889-0

    Article  CAS  PubMed  Google Scholar 

  3. He SL, Tan WH, Wang S, Wu C, Wang P, Wang B, Su X, Zhao J, Guo X, Xiang Y (2014) Genome-wide study reveals an important role of spontaneous autoimmunity, cardiomyocyte differentiation defect and antiangiogenic activities in gender-specific gene expression in Keshan disease. Chin Med J 127:72–78. https://doi.org/10.3760/cma.j.issn.0366-6999.20131167

    Article  CAS  PubMed  Google Scholar 

  4. Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, Tiret L, Smieja M, Cambien F, Meyer J, Lackner KJ, AtheroGene Investigators (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 349:1605–1613. https://doi.org/10.1056/NEJMoa030535

    Article  CAS  PubMed  Google Scholar 

  5. Chen J (1997) Trace elements and the etiology of Keshan disease. Foreign Med Sci (Section Medgeography) 18:47–48

    Google Scholar 

  6. Yan S (2008) Myocardial diseases and trace elements. Guangdong Trace Elem Sci 15:62

    Google Scholar 

  7. An R, Jiang X, Zhang G et al (1990) Study on the content of myocardial elements in Keshan disease. Natl Med J China 70:276–279

    CAS  Google Scholar 

  8. Wang S, Yan R, Wang B, du P, Tan W, Lammi MJ, Guo X (2018) Prediction of co-expression genes and integrative analysis of gene microarray and proteomics profile of Keshan disease. Sci Rep 8:231

    Article  Google Scholar 

  9. Zhao Y, Li MC, Simon R (2005) An adaptive method for cDNA microarray normalization. BMC Bioinformatics 6:28

    Article  CAS  Google Scholar 

  10. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res 41:D801–D807. https://doi.org/10.1093/nar/gks1065

    Article  CAS  PubMed  Google Scholar 

  11. Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CYJ, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, Bacic A, Hill AF, Stroud DA, Ryan MT, Agbinya JI, Mariadason JM, Burgess AW, Mathivanan S (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15:2597–2601

    Article  CAS  Google Scholar 

  12. Liu ZW, Zhu HT, Chen KL, Qiu C, Tang KF, Niu XL (2013) Selenium attenuates high glucose-induced ROS/TLR-4 involved apoptosis of rat cardiomyocyte. Biol Trace Elem Res 156:262–270. https://doi.org/10.1007/s12011-013-9857-7

    Article  CAS  PubMed  Google Scholar 

  13. Kolte D, Vijayaraghavan K, Khera S, Sica DA, Frishman WH (2014) Role of magnesium in cardiovascular diseases. Cardiol Rev 22:182–192. https://doi.org/10.1097/CRD.0000000000000003

    Article  PubMed  Google Scholar 

  14. Dentice M, Morisco C, Vitale M, Rossi G, Fenzi G, Salvatore D (2003) The different cardiac expression of the type 2 iodothyronine deiodinase gene between human and rat is related to the differential response of the dio 2 genes to Nkx-2.5 and GATA-4 transcription factors. Mol Endocrinol 17:1508–1521. https://doi.org/10.1210/me.2002-0348

    Article  CAS  PubMed  Google Scholar 

  15. Behunin SM, Lopez Pier MA, Birch CL et al (2015) LKB1/Mo25/STRAD uniquely impacts sarcomeric contractile function and posttranslational modification. Biophys J 108:1484–1494. https://doi.org/10.1016/j.bpj.2015.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar SD, Vijaya M, Samy RP, Dheen ST, Ren M, Watt F, Kang YJ, Bay BH, Tay SSW (2012) Zinc supplementation prevents cardiomyocyte apoptosis and congenital heart defects in embryos of diabetic mice. Free Radic Biol Med 53:1595–1606. https://doi.org/10.1016/j.freeradbiomed.2012.07.008

    Article  CAS  PubMed  Google Scholar 

  17. Jain M, Brenner DA, Cui L, Lim CC, Wang B, Pimentel DR, Koh S, Sawyer DB, Leopold JA, Handy DE, Loscalzo J, Apstein CS, Liao R (2003) Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes. Circ Res 93:e9–e16. https://doi.org/10.1161/01.RES.0000083489.83704.76

    Article  CAS  PubMed  Google Scholar 

  18. Roe ND, Xu X, Kandadi MR, Hu N, Pang J, Weiser-Evans MCM, Ren J (2015) Targeted deletion of PTEN in cardiomyocytes renders cardiac contractile dysfunction through interruption of Pink1-AMPK signaling and autophagy. Biochim Biophys Acta Mol basis Dis 1852:290–298. https://doi.org/10.1016/j.bbadis.2014.09.002

    Article  CAS  Google Scholar 

  19. Pang J, Fuller ND, Hu N, Barton LA, Henion JM, Guo R, Chen Y, Ren J (2016) Alcohol dehydrogenase protects against endoplasmic reticulum stress-induced myocardial contractile dysfunction via attenuation of oxidative stress and autophagy: role of PTEN-Akt-mTOR signaling. PLoS One 11:e0147322. https://doi.org/10.1371/journal.pone.0147322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Golubnitschaja O (2007) Cell cycle checkpoints: the role and evaluation for early diagnosis of senescence, cardiovascular, cancer, and neurodegenerative diseases. Amino Acids 32:359–371. https://doi.org/10.1007/s00726-006-0473-0

    Article  CAS  PubMed  Google Scholar 

  21. Zhou J, Li G, Wang ZH, Wang LP, Dong PJ (2013) Effects of low-dose hydroxychloroquine on expression of phosphorylated Akt and p53 proteins and cardiomyocyte apoptosis in peri-infarct myocardium in rats. Exp Clin Cardiol 18:e95–e98

    PubMed  PubMed Central  Google Scholar 

  22. Kato H, Takashima S, Asano Y, Shintani Y, Yamazaki S, Seguchi O, Yamamoto H, Nakano A, Higo S, Ogai A, Minamino T, Kitakaze M, Hori M (2008) Identification of p32 as a novel substrate for ATM in heart. Biochem Biophys Res Commun 366:885–891. https://doi.org/10.1016/j.bbrc.2007.11.175

    Article  CAS  PubMed  Google Scholar 

  23. Hammond EM, Dorie MJ, Giaccia AJ (2003) ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem 278:12207–12213. https://doi.org/10.1074/jbc.M212360200

    Article  CAS  PubMed  Google Scholar 

  24. Foster CR, Singh M, Subramanian V, Singh K (2011) Ataxia telangiectasia mutated kinase plays a protective role in β-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Mol Cell Biochem 353:13–22. https://doi.org/10.1007/s11010-011-0769-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu WS, Guo W, Zhu JN, Tang CM, Fu YH, Lin QX, Tan N, Shan ZX (2016) Hsp90aa1: a novel target gene of miR-1 in cardiac ischemia/reperfusion injury. Sci Rep 6:24498. https://doi.org/10.1038/srep24498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cossette SM, Bhute VJ, Bao X, Harmann LM, Horswill MA, Sinha I, Gastonguay A, Pooya S, Bordas M, Kumar SN, Mirza SP, Palecek SP, Strande JL, Ramchandran R (2016) Sucrose nonfermenting-related kinase enzyme-mediated rho-associated kinase signaling is responsible for cardiac function. Circ Cardiovasc Genet 9:474–486. https://doi.org/10.1161/CIRCGENETICS.116.001515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Zhang FB, Tang SH, Wang P, Li S, Su J, Zhou RR, Zhang JQ, Sun HF (2018) Analysis on “component-target-pathway” of Paeonia lactiflora in treating cardiac diseases based on data mining. Zhongguo Zhong Yao Za Zhi 43:1310–1316

    PubMed  Google Scholar 

  28. Barry SP, Lawrence KM, McCormick J, Soond SM, Hubank M, Eaton S, Sivarajah A, Scarabelli TM, Knight RA, Thiemermann C, Latchman DS, Townsend PA, Stephanou A (2010) New targets of urocortin-mediated cardioprotection. J Mol Endocrinol 45:69–85. https://doi.org/10.1677/JME-09-0148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu XY, Liao HH, Feng H, Zhang N, Yang JJ, Li WJ, Chen S, Deng W, Tang QZ (2018) Icariside II attenuates cardiac remodeling via AMPKα2/mTORC1 in vivo and in vitro. J Pharmacol Sci 138:38–45. https://doi.org/10.1016/j.jphs.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  30. Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466:62–67. https://doi.org/10.1038/nature09130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bultman SJ, Holley DW, G de Ridder G et al (2016) BRG1 and BRM SWI/SNF ATPases redundantly maintain cardiomyocyte homeostasis by regulating cardiomyocyte mitophagy and mitochondrial dynamics in vivo. Cardiovasc Pathol 25:258–269. https://doi.org/10.1016/j.carpath.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao S, Yang Z, Shi R, Xu D, Li H, Xia Z, Wu QP, Yao S, Wang T, Yuan S (2016) Diabetes blocks the cardioprotective effects of sevoflurane postconditioning by impairing Nrf2/Brg1/HO-1 signaling. Eur J Pharmacol 779:111–121. https://doi.org/10.1016/j.ejphar.2016.03.018

    Article  CAS  PubMed  Google Scholar 

  33. Kim YK, Suarez J, Hu Y, McDonough PM, Boer C, Dix DJ, Dillmann WH (2006) Deletion of the inducible 70-kDa heat shock protein genes in mice impairs cardiac contractile function and calcium handling associated with hypertrophy. Circulation 113:2589–2597. https://doi.org/10.1161/CIRCULATIONAHA.105.598409

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Wu ML, Cao SP, Cai H, Zhao ZM, Song YH (2018) Cycloastragenol ameliorates experimental heart damage in rats by promoting myocardial autophagy via inhibition of AKT1-RPS6KB1 signaling. Biomed Pharmacother 107:1074–1081. https://doi.org/10.1016/j.biopha.2018.08.016

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Guo.

Ethics declarations

The subjects who had cardiovascular disease, hypertension, or diabetes were excluded from the study. Every subject involved in the investigation signed the informed consent. This investigation obtained the approval of Human Ethics Committee of Xi’an Jiaotong University, Xi’an, Shaanxi, China. We confirm that all the experiments were performed in accordance with the relevant guidelines and regulations.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Fig. S1

Bars indicate the expression levels of IDH2 and FEM1A measured by qRT-PCR. The expression level of each gene is normalized by internal control GAPDH. Values represent the mean ± SD (PNG 6 kb)

High resolution image (TIF 17 kb)

Table S1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yan, R., Wang, B. et al. The Functional Analysis of Selenium-Related Genes and Magnesium-Related Genes in the Gene Expression Profile Microarray in the Peripheral Blood Mononuclear Cells of Keshan Disease. Biol Trace Elem Res 192, 3–9 (2019). https://doi.org/10.1007/s12011-019-01750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01750-2

Keywords

Navigation