Skip to main content

Advertisement

Log in

The Association Between Alcohol Consumption and Renal Tubular Dysfunction Induced by Cadmium Exposure

  • Original Article
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Alcohol consumption is inversely associated with the risk of chronic kidney diseases. However, this association has not been reported in populations exposed to cadmium. In the present study, we examined the association between alcohol consumption and renal tubular dysfunction in populations living in cadmium-polluted areas. A total of 446 subjects (170 men and 276 women) were finally included in our analysis. The urinary cadmium (UCd) and cadmium in blood (BCd) were determined as the exposure biomarkers. Urinary N-acetyl-β-d-glucosaminidase (UNAG) and β2-microgloblin (UBMG) were measured as renal indicators. Alcohol drinking patterns were obtained from a questionnaire and divided into four categories: non-drinking, light drinking (< 3 drinks/week), moderate drinking (3–7 drinks/week), and heavy drinking (> 7 drinks /week). If UNAG was the indicator of renal dysfunction, the prevalence of renal tubular dysfunction was decreased in subjects with alcohol consumption both in men (χ2 = 8.5, p < 0.01) and women (χ2 = 8.3, p < 0.01). The odds ratio (OR) of subjects with light and moderate alcohol drinking was 0.31 (95% confidence interval (CI), 0.1–0.99) and 0.30 (95%CI, 0.1–0.96), respectively, compared with those of non-drinkers after adjusting with the confounders in men. Similar results were observed in women with light drinking (OR = 0.33, 95%CI, 0.15–0.70). Similar trends were observed in those subjects with high BCd (> 3.0 μg/L) or UCd (> 5.0 μg/g creatinine). Our data show that alcohol consumption is inversely associated with cadmium-induced renal tubular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jin T, Nordberg M, Frech W, Dumont X, Bernard A, Ye T, Kong Q, Wang Z, Li P, Lundström NG, Li Y, Nordberg GF (2002) Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China. Biometals 15:397–410

    Article  CAS  PubMed  Google Scholar 

  2. Hu Y, Cheng H, Tao S (2016) The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environ Int 92-93:515–532

    Article  CAS  PubMed  Google Scholar 

  3. WHO/ICPS (1992) Cadmium. In: Environmental health criteria document, vol 134. IPCS. WHO, Geneva, pp 1–280

    Google Scholar 

  4. Åkesson A, Lundh T, Vahter M, Bjellerup P, Lidfeldt J, Nerbrand C, Samsioe G, Strömberg U, Skerfving S (2005) Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ Health Perspect 113:1627–1631

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hambach R, Lison D, D'Haese P, Weyler J, François G, De Schryver A, Manuel-Y-Keenoy B, Van Soom U, Caeyers T, van Sprundel M (2013) Adverse effects of low occupational cadmium exposure on renal and oxidative stress biomarkers in solderers. Occup Environ Med 70:108–113

    Article  CAS  PubMed  Google Scholar 

  6. Hotz P, Buchet JP, Bernard A, Lison D, Lauwerys R (1999) Renal effects of low-level environmental cadmium exposure: 5-year follow-up of a subcohort from the Cadmibel study. Lancet 354:1508–1513

    Article  CAS  PubMed  Google Scholar 

  7. Babaknejad N, Moshtaghie AA, Nayeri H, Hani M, Bahrami S (2016) Protective role of zinc and magnesium against cadmium nephrotoxicity in male Wistar rats. Biol Trace Elem Res 174:112–120

    Article  CAS  PubMed  Google Scholar 

  8. Kim KS, Lim HJ, Lim JS, Son JY, Lee J, Lee BM, Chang SC, Kim HS (2018) Curcumin ameliorates cadmium-induced nephrotoxicity in Sprague-Dawley rats. Food Chem Toxicol 114:34–40

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Wu Y, Luo K, Liu Y, Zhou M, Yan S, Shi H, Cai Y (2013) The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney. Food Chem Toxicol 58:61–67

    Article  CAS  PubMed  Google Scholar 

  10. Chen X, Dai Y, Wang Z, Zhu G, Ding X, Jin T (2018) The association between serum vitamin D levels and renal tubular dysfunction in a general population exposed to cadmium in China. PLoS One 13:e0195682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chen X, Wang Z, Zhu G, Nordberg GF, Ding X, Jin T (2018) Association between renal tubular dysfunction and zinc level in a Chinese population environmentally exposed to cadmium. Biol Trace Elem Res 186:114–121

    Article  CAS  PubMed  Google Scholar 

  12. Grau-Perez M, Pichler G, Galan-Chilet I, Briongos-Figuero LS, Rentero-Garrido P, Lopez-Izquierdo R, Navas-Acien A, Weaver V, García-Barrera T, Gomez-Ariza JL, Martín-Escudero JC, Chaves FJ, Redon J, Tellez-Plaza M (2017) Urine cadmium levels and albuminuria in a general population from Spain: a gene-environment interaction analysis. Environ Int 106:27–36

    Article  CAS  PubMed  Google Scholar 

  13. Lin YS, Ho WC, Caffrey JL, Sonawane B (2014) Low serum zinc is associated with elevated risk of cadmium nephrotoxicity. Environ Res 134:33–38

    Article  CAS  PubMed  Google Scholar 

  14. Lei L, Chang X, Rentschler G, Tian L, Zhu G, Chen X, Jin T, Broberg K (2012) A polymorphism in metallothionein 1A (MT1A) is associated with cadmium-related excretion of urinary beta 2-microglobulin. Toxicol Appl Pharmacol 265:373–379

    Article  CAS  PubMed  Google Scholar 

  15. Bundy JD, Bazzano LA, Xie D, Cohan J, Dolata J, Fink JC, Hsu CY, Jamerson K, Lash J, Makos G, Steigerwalt S, Wang X, Mills KT, Chen J, He J (2018) Self-reported tobacco, alcohol, and illicit drug use and progression of chronic kidney disease. Clin J Am Soc Nephrol 13:993–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim HN, Kim SH, Song SW (2014) Is alcohol drinking associated with renal impairment in the general population of South Korea? Kidney Blood Press Res 39:40–49

    Article  CAS  PubMed  Google Scholar 

  17. Koning SH, Gansevoort RT, Mukamal KJ, Rimm EB, Bakker SJ, Joosten MM (2015) Alcohol consumption is inversely associated with the risk of developing chronic kidney disease. Kidney Int 87:1009–1016

    Article  CAS  PubMed  Google Scholar 

  18. Matsumoto A, Nagasawa Y, Yamamoto R, Shinzawa M, Hasuike Y, Kuragano T, Isaka Y, Nakanishi T, Iseki K, Yamagata K, Tsuruya K, Yoshida H, Fujimoto S, Asahi K, Moriyama T, Watanabe T (2017) The association of alcohol and smoking with CKD in a Japanese nationwide cross-sectional survey. Hypertens Res 40:771–778

    Article  PubMed  Google Scholar 

  19. Sato KK, Hayashi T, Uehara S, Kinuhata S, Oue K, Endo G, Kambe H, Fukuda K (2014) Drinking pattern and risk of chronic kidney disease: the kansai healthcare study. Am J Nephrol 40:516–522

    Article  CAS  PubMed  Google Scholar 

  20. Reynolds K, Gu D, Chen J, Tang X, Yau CL, Yu L, Chen CS, Wu X, Hamm LL, He J (2008) Alcohol consumption and the risk of end-stage renal disease among Chinese men. Kidney Int 73:870–876

    Article  CAS  PubMed  Google Scholar 

  21. Kimura Y, Yamamoto R, Shinzawa M, Isaka Y, Iseki K, Yamagata K, Tsuruya K, Yoshida H, Fujimoto S, Asahi K, Moriyama T, Watanabe T (2018) Alcohol consumption and incidence of proteinuria: a retrospective cohort study. Clin Exp Nephrol 22:1133–1142

    Article  PubMed  Google Scholar 

  22. Singh P, Dutta SR, Passi D, Bharti J (2017) Benefits of alcohol on arsenic toxicity in rats. J Clin Diagn Res 11:BF01–BF06

    PubMed  PubMed Central  Google Scholar 

  23. Chen X, Zhu G, Wang Z, Liang Y, Chen B, He P, Nordberg M, Nordberg GF, Ding X, Jin T (2018) The association between dietary cadmium exposure and renal dysfunction - the benchmark dose estimation of reference levels: the ChinaCad study. J Appl Toxicol 38:1365–1373

    Article  CAS  PubMed  Google Scholar 

  24. Jin T, Nordberg GF, Wu X, Ye T, Kong Q, Wang Z, Zhuang F, Cai S (1999) Urinary N-acetyl-β-D-glucosaminidase isoenzymes as biomarker of renal dysfunction caused by cadmium in a general population. Environ Res 81:167–173

    Article  CAS  PubMed  Google Scholar 

  25. Tucker SM, Boyd PJ, Thompson AE, Price RG (1975) Automated assay of N-acetyl-beta-glucosaminidase in normal and pathological human urine. Clin Chim Acta 62:333–339

    Article  CAS  PubMed  Google Scholar 

  26. Rehm J, Gmel GE Sr, Gmel G, Hasan OSM, Imtiaz S, Popova S, Probst C, Roerecke M, Room R, Samokhvalov AV, Shield KD, Shuper PA (2017) The relationship between different dimensions of alcohol use and the burden of disease-an update. Addiction 112:968–1001

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hu EA, Lazo M, Rosenberg SD, Grams ME, Steffen LM, Coresh J, Rebholz CM (2009) Alcohol consumption and incident kidney disease: results from the atherosclerosis risk in communities study. J Ren Nutr. https://doi.org/10.1053/j.jrn.2019.01.011

    Article  PubMed  CAS  Google Scholar 

  28. Gaziano JM, Buring JE, Breslow JL, Goldhaber SZ, Rosner B, VanDenburgh M, Willett W, Hennekens CH (1993) Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction. N Engl J Med 329:1829–1834

    Article  CAS  PubMed  Google Scholar 

  29. Beulens JW, Rimm EB, Hu FB, Hendriks HF, Mukamal KJ (2018) Alcohol consumption, mediating biomarkers, and risk of type 2 diabetes among middle-aged women. Diabetes Care 31:2050–2055

    Article  CAS  Google Scholar 

  30. Holst C, Becker U, Jørgensen ME, Grønbæk M, Tolstrup JS (2017) Alcohol drinking patterns and risk of diabetes: a cohort study of 70,551 men and women from the general Danish population. Diabetologia 60:1941–1950

    Article  PubMed  Google Scholar 

  31. Zakhari S (1997) Alcohol and the cardiovascular system: molecular mechanisms for beneficial and harmful action. Alcohol Health Res World 21:21–29

    CAS  PubMed  PubMed Central  Google Scholar 

  32. De Marchi S, Cecchin E, Basile A, Bertotti A, Nardini R, Bartoli E (1993) Renal tubular dysfunction in chronic alcohol abuse--effects of abstinence. N Engl J Med 329:1927–1934

    Article  PubMed  Google Scholar 

  33. Labib M, Abdel-Kader M, Ranganath L, Martin S, Marks V (1989) Impaired renal tubular function in chronic alcoholics. J R Soc Med 82(3):139–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu Y, Wang W, Jin K, Zhu Q, Lin H, Xie M, Wang D (2018) Perillyl alcohol protects human renal tubular epithelial cells from hypoxia/reoxygenation injury via inhibition of ROS, endoplasmic reticulum stress and activation of PI3K/Akt/eNOS pathway. Biomed Pharmacother 95:662–669

    Article  CAS  Google Scholar 

  35. Rodrigo R, Miranda A, Vergara L (2011) Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin Chim Acta 412:410–424

    Article  CAS  PubMed  Google Scholar 

  36. Epstein M (1997) Alcohol's impact on kidney function. Alcohol Health Res World 21:84–92

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Brzoska MM, Moniuszko-Jakoniuk J, Jurczuk M, Galazyn-Sidorczuk M, Rogalska J (2000) Effect of short-term ethanol administration on cadmium retention and bioelement metabolism in rats continuously exposed to cadmium. Alcohol Alcohol 35:439–445

    Article  CAS  PubMed  Google Scholar 

  38. Brzoska MM, Galazyn-Sidorczuk M, Dzwilewska I (2013) Ethanol consumption modifies the body turnover of cadmium: a study in a rat model of human exposure. J Appl Toxicol 33:784–798

    Article  CAS  PubMed  Google Scholar 

  39. Grasmick C, Huel G, Moreau T, Sarmini H (1985) The combined effect of tobacco and alcohol consumption on the level of lead and cadmium in blood. Sci Total Environ 41:207–217

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki KT, Sunaga H, Yamane Y, Aoki Y (1991) Binding of cadmium to alcohol dehydrogenase in the liver before induction of metallothionein. Res Commun Chem Pathol Pharmacol 74:223–236

    CAS  PubMed  Google Scholar 

  41. Tu L, Wang AL, Ren CZ, Li ZG, Saito M (2013) Antioxidant activities and protective effects on hyperlipidemic mice of Chinese oat rice wine. Jpn Agr Res Q 47:209–216

    Article  CAS  Google Scholar 

  42. He X, Rebholz CM, Daya N, Lazo M, Selvin E (2019) Alcohol consumption and incident diabetes: The Atherosclerosis Risk in Communities (ARIC) study. Diabetologia 62:770–778

    Article  PubMed  PubMed Central  Google Scholar 

  43. GBD 2016 Alcohol Collaborators (2016) Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 392:1015–1035

    Google Scholar 

  44. Schaeffner E, Ritz E (2012) Alcohol and kidney damage: a Janus-faced relationship. Kidney Int 81:816–818

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (nos. 81773460 and 81102148) and the Natural Science Foundation of Jiangsu Province (no. BK20161609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Declaration of Helsinki was followed during the study. The study was approved by the institutional review board of Shanghai Medical College Fudan University, China.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Cui, W., Duan, N. et al. The Association Between Alcohol Consumption and Renal Tubular Dysfunction Induced by Cadmium Exposure. Biol Trace Elem Res 194, 58–65 (2020). https://doi.org/10.1007/s12011-019-01748-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01748-w

Keywords

Navigation