Skip to main content

Elevated Serum Pb, Ni, Cd, and Cr Levels and DNA Damage in Exfoliated Buccal Cells of Teenage Scavengers at a Major Electronic Waste Dumpsite in Lagos, Nigeria

Abstract

This study investigated the levels of Pb, Ni, Cd, and Cr in the blood, and DNA damage in exfoliated buccal cavity of scavenging teenagers at Alaba International electronic market, Nigeria. One hundred and ninety-nine blood samples were collected from scavenging teenagers in Alaba International market (n = 95) and the control group (n = 104). Blood Pb, Ni, Cd, and Cr concentrations were analyzed using graphite furnace atomic absorption spectrometry. Genotoxicity assessment was through exfoliated buccal cell micronucleus assay, while questionnaire was used to collect data on factors that can contribute to the blood heavy metal levels. The blood Pb of scavenging teenagers from Alaba International market varied from 2.84 to 189.44 μg/L compared to the control group with a range of 0.01 to 4.21 μg/L. The blood Cd (range = 0.38–12.35 μg/L), Cr (range = 0.20–19.03 μg/L), and Ni (range = 0.24–21.01 μg/L) were higher significantly in the Alaba group compared to the control group (Cd: range = 0.00–0.96 μg/L; Cr: range = 0.01–0.72 μg/L; and Ni: range = 0.00–0.28 μg/L). Frequencies of micronucleus, karyolysis, and pycnosis in the exfoliated buccal cells in Alaba group also increased significantly compared with the control group. Spearman correlation analyses indicated a positive correlation between the blood Pb, Ni, Cd, and Cr and induced micronucleus in the buccal exfoliated cells. Furthermore, data showed a positive correlation between Pb, Ni, Cd, and Cr and the duration of scavenging of the teenagers. However, a negative correlation was observed between educational status and Pb, Ni, Cd, and Cr. E-waste indiscriminate disposal and primitive recycling processes may be responsible for the high blood heavy metal levels, and consequently an increased DNA damage in exfoliated buccal cells in scavenging teenagers at Alaba International market.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alabi OA, Bakare AA (2011) Genotoxicity and mutagenicity of electronic waste leachates using animal bioassays. Toxicol Environ Chem 93:1073–1088

    CAS  Article  Google Scholar 

  2. Alabi OA, Bakare AA (2015) Perceived public health effects of occupational and residential exposure to electronic wastes in Lagos, Nigeria. Zoologist 13:62–71 ISSN 1596 972X

    Google Scholar 

  3. Alabi OA, Bakare AA (2017) Genetic damage induced by electronic waste leachates and contaminated underground water in two prokaryotic systems. Toxicol Mech Methods 27(9):657–665

    CAS  PubMed  Article  Google Scholar 

  4. Alabi OA, Bakare AA, Xu X, Li B, Zhang Y, Huo X (2012) Comparative evaluation of environmental contamination and DNA damage induced by electronic waste in Nigeria and China. Sci Total Environ 423:62–72

    CAS  PubMed  Article  Google Scholar 

  5. Alabi OA, Bakare AA, Filippin-Monteiro FB, Sierra JA, Creczynski-Pasa TB (2013) Electronic waste leachate-mediated DNA fragmentation and cell death by apoptosis in mouse fibroblast (NIH/3T3) cell line. Ecotoxicol Environ Saf 94:87–93

    CAS  PubMed  Article  Google Scholar 

  6. Asante KA, Adu-Kumi S, Nakahiro K, Takahashi S, Isobe T, Sudaryanto A, Devanathan G, Clarke E, Ansa-Asare OD, Dapaah-Siakwan S (2012) Human exposure to PCBs, PBDEs and HBCDs in Ghana: temporal variation, sources of exposure and estimation of daily intakes by infants. Environ Int 37:921–928

    Article  CAS  Google Scholar 

  7. Bakare AA, Alabi OA, Gbadebo AM, Ogunsuyi OI, Alimba CG (2013) In vivo cytogenotoxicity and oxidative stress induced by electronic waste leachate and contaminated well water. Challenges 4:169–187

    Article  Google Scholar 

  8. Basel Action Network (2005) The digital dump: Exporting re-use and abuse to Africa. Basel Action Network. Puckett, J., Ed.; 24 October 2005. Available online: http://www.ban.org (accessed on 18 August 2018)

  9. Binkova B, Lewtas J, Miskova I (1996) Biomarker studies in northern Bohemia. Environ Health Perspect 104(3):591–597

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bohrer PL, Filho MS, Paiva RL, da Silva IL, Rados PV (2005) Assessment of micronucleus frequency in normal oral mucosa of patients exposed to carcinogens. Acta Cytol 49:265–272

    PubMed  Article  Google Scholar 

  11. Brulle RJ, Pellow DN (2006) Environmental justice: human health and environmental inequalities. Ann Rev Public Health 27:103–124

    Article  Google Scholar 

  12. Chiodo LM, Jacobson SW, Jacobson JL (2004) Neurodevelopmental effects of postnatal lead exposure at very low levels. Neurotoxicol Teratol 26:359–371

    CAS  PubMed  Article  Google Scholar 

  13. Council for International Organizations and Medical Sciences, CIOMS (2002) World Health Organization. International ethical guidelines for biomedical research involving human subjects. Geneva, Switzerland: World Health Organization. Available from: www.who.int/bookorders/anglais/detart1.jsp?sesslan_1&codlan_1&codcol_84&codcch_201 (accessed February 2017)

  14. Eguchi A, Nomiyama K, Devanathan G, Subramanian A, Bulbule KA, Parthasarathy P, Takahashi S, Tanabe S (2012) Different profiles of anthropogenic and naturally produced organohalogen compounds in serum from residents living near a coastal area and e-waste recycling workers in India. Environ Int 47:8–16

    CAS  PubMed  Article  Google Scholar 

  15. El Ghissassi F, Baan R, Straif K (2009) A review of human carcinogens—part D: radiation. Lancet Oncol 10(8):751–752

    PubMed  Article  Google Scholar 

  16. Everatt R, Slapsyte G, Mierauskiene J (2013) Biomonitoring study of dry cleaning workers using cytogenetic tests and the comet assay. J Occup Environ Hyg 10(11):609–621

    CAS  PubMed  Article  Google Scholar 

  17. Frenzilli G, Nigro M, Lyons BP (2009) The comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res 681(1):80–92

    CAS  PubMed  Article  Google Scholar 

  18. Friedmana LS, Lukyanovab EM, Kundiev YI, Shkiryak-Nizhnykb ZA, Chislovskab NV, Muchaa A (2006) Anthropometric, environmental, and dietary predictors of elevated blood cadmium levels in Ukrainian children: Ukraine ELSPAC group. Environ Res 102:83–89

    Article  CAS  Google Scholar 

  19. Gil F, Hernández AF (2009) Significance of biochemical markers in applied toxicology. In: Ballantyne B, Marrs TC, Syversen T (eds) General and Applied Toxicology, vol 2. Wiley, Chichester, pp 847–858

    Google Scholar 

  20. Grigg J (2004) Environmental toxins: their impact on children’s health. Arch Dis Child 89:244–250

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Ha NN, Agusa T, Ramu K, Tu NPC, Murata S, Bulbule KA (2009) Contamination by trace elements at e-waste recycling sites in Bangalore, India. Chemosphere 76:9–15

    PubMed  Article  CAS  Google Scholar 

  22. Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S, Fenech M (2008) The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: the HUMN project perspective on current status and knowledge gaps. Mutat Res 659(1):93–108

    CAS  PubMed  Article  Google Scholar 

  23. Huo X, Peng L, Xu X, Zheng L, Qiu B, Qi B, Qi Z, Zhang B, Han D, Piao Z (2007) Elevated blood lead levels of children in Guiyu an electronic waste recycling town in China. Environ Health Perspect 115(7):1113–1117

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. IARC (1993) IARC Monographs on the evaluation of the carcinogenic risks to humans. In: International Agency for Research on Cancer (ed) Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry, vol 58. IARC, France [444 pp., Last accessed 15 July 2018]

    Google Scholar 

  25. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    PubMed  Article  Google Scholar 

  26. Järup L, Berglund M, Elinder CG, Nordberg G, Vahter M (1998) Health effects of cadmium exposure — a review of the literature and a risk estimate. Scand J Work Environ Health 24:1–51

    PubMed  Article  Google Scholar 

  27. Järup L, Hellstrom L, Alfve T, Carlsson MD, Grubb A, Persson B (2000) Low level exposure to cadmium and early kidney damage: the OSCAR study. Occup Environ Med 57:668–672

    PubMed  PubMed Central  Article  Google Scholar 

  28. Joshi MS, Verma Y, Gautam AK, Parmar G, Lakkad BC, Kumar S (2011) Cytogenetic alterations in buccal mucosa cells of chewers of areca nut and tobacco. Chew Arch Bio 56:63–67

    CAS  Google Scholar 

  29. Jusko TA, Henderson CR, Lanphear BP, Cory-Slechta DA, Parsons PJ, Canfield RL (2008) Blood lead concentrations b10 microg/dL and child intelligence at 6 years of age. Environ Health Perspect 116:243–248

    CAS  PubMed  Article  Google Scholar 

  30. Kassie F, Parzefall W, Knasmuller S (2000) Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res 463(1):13–31

    CAS  PubMed  Article  Google Scholar 

  31. Khassouania CE, Soulaymania R, Maurasb Y, Allainb P (2000) Blood cadmium concentration in the population of the Rabat area, Morocco. Clin Chim Acta 302:155–160

    Article  Google Scholar 

  32. Kiddee P, Naidu R, Wong MH (2013) Electronic waste management approaches: an overview. Waste Manag 33(5):1237–1250

    PubMed  Article  Google Scholar 

  33. Koller K, Brown T, Spurgeon A, Levy L (2004) Recent developments in low-level lead exposure and intellectual impairment in children. Environ Health Perspect 112:987–994

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Koshy L, Paris E, Ling S, Jones T, Berube K (2007) Bio-reactivity of leachate from municipal solid waste landfills assessment of toxicity. Sci Total Environ 384(1–3):171–181

    CAS  PubMed  Article  Google Scholar 

  35. Leung AO, Cai ZW, Wong MH (2006) Environmental contamination from electronic waste recycling at Guiyu, Southeast China. J Mater Cycles Waste Manage 8:21–33

    CAS  Article  Google Scholar 

  36. Leung AO, Duzgoren-Aydin NS, Cheung KC, Wong MH (2008) Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in Southeast China. Environ Sci Technol 42:2674–2680

    CAS  PubMed  Article  Google Scholar 

  37. Livingston GK, Reed RN, Olson BL, Lockey JE (1990) Induction of nuclear aberrations by smokeless tobacco in epithelial cells of human oral mucosa. Environ Mol Mutagen 15(3):136–144

    CAS  PubMed  Article  Google Scholar 

  38. Manhart A, Osibanjo O, Aderinto A, Prakash S (2011) Informal e-waste management in Lagos, Nigeria—socio-economic impacts and feasibility of international recycling co-operations. Final report of component 3 of the UNEP SBC E-waste Africa project. Öko-Institut e.V., Lagos & Freiburg, p 2011

    Google Scholar 

  39. Merzenich H, Hartwig A, Ahrens W, Beyersmann D, Schlepegrell R, Scholze M (2001) Biomonitoring on carcinogenic metals and oxidative DNA damage in a cross-sectional study. Cancer Epidemiol Biomark Prev 10:515–522

    CAS  Google Scholar 

  40. Nunes JA, Batista BL, Rodrigues JL, Caldas NM, Neto JAG, Barbosa F Jr (2010) A simple method based on ICP-MS for estimation of background levels of arsenic, cadmium, cooper, manganese, nickel, lead and selenium in blood of the braziliam population. J Toxicol Environ Health A 73:878–887

    CAS  PubMed  Article  Google Scholar 

  41. Proia NK, Paszkiewicz GM, Nasca MA, Franke GE, Pauly JL (2006) Smoking and smokeless tobacco-associated human buccal cell mutations and their association with oral cancer—a review. Cancer Epidemiol Biomark Prev 15(6):1061–1077

    CAS  Article  Google Scholar 

  42. Reali D, Di Marino F, Bahramandpour S, Carducci A, Barale R, Loprieno N (1987) Micronuclei in exfoliated urothelial cells and urine mutagenicity in smokers. Mutat Res Lett 192(2):145–149

    CAS  Article  Google Scholar 

  43. Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408(2):183–191

    CAS  PubMed  Article  Google Scholar 

  44. Saatci C, Ozkul Y, Tahiri S, Caglayan AO, Turhan AB, Dundar M (2008) The effect of maras powder on DNA methylation and micronucleus formation in human buccal tissue. J Toxicol Environ Health A 71:396–404

    CAS  PubMed  Article  Google Scholar 

  45. Safi J, Fischbein A, El Haj S, Sansour R, Jaghabir M, Hashish MA (2006) Childhood lead exposure in the Palestinian authority, Israel, and Jordan: results from the middle eastern regional cooperation project, 1996–2000. Environ Health Perspect 114:917–922

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Satarug S, Haswell-Elkins MR, Moore MR (2000) Safe levels of cadmium intake to prevent renal toxicity in human subjects. Brit J Nut 84:791–802

    CAS  Article  Google Scholar 

  47. Schnaas L, Rothenberg SJ, Flores MF, Martinez S, Hernandez C, Osorio E (2006) Reduced intellectual development in children with prenatal lead exposure. Environ Health Perspect 114:791–797

    CAS  PubMed  Article  Google Scholar 

  48. Shaik AP, Jamil K (2009) Individual susceptibility and genotoxicity in workers exposed to hazardous materials like lead. J Hazard Mater 168:918–924

    CAS  PubMed  Article  Google Scholar 

  49. Srigboh RK, Basu N, Stephens J, Asampong E, Perkins M, Neitzel RL, Fobil J (2016) Multiple elemental exposures amongst workers at the Agbogbloshie electronic waste (e-waste) site in Ghana. Chemosphere 164:68–74

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Stich H, Rosin M (1983) Micronuclei in exfoliated human cells as an internal dosimeter for exposures to carcinogens. In: Stich H (ed) Carcinogens and mutagens in the environment, vol 2. CRC Press, Boca Raton, pp 17–25

    Google Scholar 

  51. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Luch A (ed) Mol Clin Environ Toxicol, vol 3, pp 133–164

    Chapter  Google Scholar 

  52. Tolbert EP, Shy CM, Allen JW (1992) Micronuclei and other nuclear anomalies in buccal smears: methods development. Mutat Res 271:69–77

    CAS  PubMed  Article  Google Scholar 

  53. Wilhelm M, Ewers U, Schulz C (2004) Revised and new reference values for some trace elements in blood and urine for human biomonitoring in environmental medicine. Int J Hyg Environ Health 207:69–73

    CAS  PubMed  Article  Google Scholar 

  54. Williams E, Kahhat R, Allenby B, Kavazajian E, Kim J, Xu M (2008) Environmental, social and economic implications of global reuse and recycling of personal computers. Environ Sci Technol 42:6446–6454

    CAS  PubMed  Article  Google Scholar 

  55. Wong MH, Wu SC, Deng WJ, Yu XZ, Luo Q, Leung AOW, Wong CSC, Luksemburg WJ, Wong AS (2007) Export of toxic chemicals — a review of the case of uncontrolled electronic-waste recycling. Environ Pollut 149:131–140

    CAS  PubMed  Article  Google Scholar 

  56. Xing GH, Chan JKY, Leung AOW, Wu SC, Wong MH (2009) Environmental impact and human exposure to PCBs in Guiyu, an electronic waste recycling site in China. Environ Int 35:76–82

    CAS  PubMed  Article  Google Scholar 

  57. Zhao G, Wang Z, Dong MH, Rao K, Luo J, Wang D, Zha J, Huang S, Xu Y, Ma M (2008) PBBs, PBDEs, and PCBs levels in hair of residents around e-waste disassembly sites in Zhejiang Province, China, and their potential sources. Sci Total Environ 397:46–57

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the authorities of the Alaba International market for the cooperation throughout the period of the sampling in the market. Also, we thank Staff Nurses Adebimpe Ajao and Evelyn Adebayo for helping in blood collection. The authors thank Department of Biology, Federal University of Technology, Akure for the provision of research materials to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okunola A. Alabi.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alabi, O.A., Adeoluwa, Y.M. & Bakare, A.A. Elevated Serum Pb, Ni, Cd, and Cr Levels and DNA Damage in Exfoliated Buccal Cells of Teenage Scavengers at a Major Electronic Waste Dumpsite in Lagos, Nigeria. Biol Trace Elem Res 194, 24–33 (2020). https://doi.org/10.1007/s12011-019-01745-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01745-z

Keywords

  • E-waste
  • Heavy metal toxicity
  • Buccal cell micronucleus
  • Scavenging teenagers
  • DNA damage